首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functions of α‐ and β‐branch carotenoids in whole‐plant acclimation to photo‐oxidative stress were studied in Arabidopsis thaliana wild‐type (wt) and carotenoid mutants, lut ein deficient (lut2, lut5), n on‐p hotochemical q uenching1 (npq1) and s uppressor of z eaxanthin‐l ess1 (szl1) npq1 double mutant. Photo‐oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α‐ to β‐branch carotenoid composition (α/β‐ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β‐branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β‐ratios (lut5, szl1npq1) or without xanthophyll‐cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β‐ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β‐ratios. The results highlight the importance of proper regulation of the α‐ and β‐branch carotenoid pathways for whole‐plant acclimation, not only leaf photoprotection, under photo‐oxidative stress.  相似文献   

2.
3.
γ‐Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABATs) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus‐induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABATs (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs‐ and SlGABATs‐silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH‐silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ‐hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ‐hydroxybutyrate and subsequent ROS accumulation under salt stress.  相似文献   

4.
5.
6.
7.
Gamma‐aminobutyric acid (GABA) is a non‐protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA‐transaminase, GABA‐T), we attempted seed‐specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB‐1) or rice embryo globulin promoters (REG) and GABA‐T‐based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T1 and T2 generations of rice lines displayed high GABA concentrations (2–100 mg/100 g grain). In analyses of two selected lines from the T3 generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA‐T expression was relatively weak. In these two lines both with two T‐DNA copies, their starch, amylose, and protein levels were slightly lower than non‐transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75–350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.  相似文献   

8.
In vivo regeneration of lost or dysfunctional islet β cells can fulfill the promise of improved therapy for diabetic patients. To achieve this, many mitogenic factors have been attempted, including gamma‐aminobutyric acid (GABA). GABA remarkably affects pancreatic islet cells’ (α cells and β cells) function through paracrine and/or autocrine binding to its membrane receptors on these cells. GABA has also been studied for promoting the transformation of α cells to β cells. Nonetheless, the gimmickry of GABA‐induced α‐cell transformation to β cells has two different perspectives. On the one hand, GABA was found to induce α‐cell transformation to β cells in vivo and insulin‐secreting β‐like cells in vitro. On the other hand, GABA treatment showed that it has no α‐ to β‐cell transformation response. Here, we will summarize the physiological effects of GABA on pancreatic islet β cells with an emphasis on its regenerative effects for transdifferentiation of islet α cells to β cells. We will also critically discuss the controversial results about GABA‐mediated transdifferentiation of α cells to β cells.  相似文献   

9.
Plant endo‐β‐1,4‐glucanases (EGases) include cell wall‐modifying enzymes that are involved in nematode‐induced growth of syncytia (feeding structures) in nematode‐infected roots. EGases in the α‐ and β‐subfamilies contain signal peptides and are secreted, whereas those in the γ‐subfamily have a membrane‐anchoring domain and are not secreted. The Arabidopsis α‐EGase At1g48930, designated as AtCel6, is known to be down‐regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α‐EGase, AtCel2, is up‐regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots reduces susceptibility to both soybean cyst nematode (SCN; Heterodera glycines) and root knot nematode (Meloidogyne incognita). Suppression of GmCel7, the soybean homologue of AtCel2, in soybean roots also reduces the susceptibility to SCN. In contrast, in studies on two γ‐EGases, both ectopic expression of AtKOR2 in soybean roots and suppression of the soybean homologue of AtKOR3 had no significant effect on SCN parasitism. Our results suggest that secreted α‐EGases are likely to be more useful than membrane‐bound γ‐EGases in the development of an SCN‐resistant soybean through gene manipulation. Furthermore, this study provides evidence that Arabidopsis shares molecular events of cyst nematode parasitism with soybean, and confirms the suitability of the Arabidopsis–H. schachtii interaction as a model for the soybean–H. glycines pathosystem.  相似文献   

10.
In the central nervous system, interleukin (IL)‐1β, IL‐6 and tumour necrosis factor (TNF)‐α have a regulatory role in pathophysiological processes of epilepsy. In addition, γ‐aminobutyric acid (GABA) transporter type 1 and type 3 (GAT‐1 and GAT‐3) modulate the levels of extracellular GABA in involvement in the neuroinflammation on epileptogenesis. Thus, in the current report we examined the effects of inhibiting microRNA‐155 (miR‐155) on the levels of IL‐1β, IL‐6 and TNF‐α, and expression of GAT‐1 and GAT‐3 in the parietal cortex, hippocampus and amygdala of rats with nonconvulsive seizure (NCS) following cerebral ischaemia. Real time RT‐PCR, ELISA and Western blot analysis were used to examine the miR‐155, proinflammatory cytokines (PICs) and GAT‐1/GAT‐3 respectively. With induction of NCS, the levels of miR‐155 were amplified in the parietal cortex, hippocampus and amygdala and this was accompanied with increases of IL‐1β, IL‐6 and TNF‐α. In those central areas, expression of GAT‐1 and GAT‐3 was upregulated; and GABA was reduced in rats following NCS. Intracerebroventricular infusion of miR‐155 inhibitor attenuated the elevation of PICs, amplification of GAT‐1 and GAT‐3 and impairment of GABA. Furthermore, inhibition of miR‐155 decreased the number of NCS events following cerebral ischaemia. Inhibition of miR‐155 further improved post‐ischaemia‐evoked NCS by altering neuroinflammation‐GABA signal pathways in the parietal cortex, hippocampus and amygdala. Results suggest the role of miR‐155 in regulating post‐ischaemic seizures via PICs‐GABA mechanisms.  相似文献   

11.
12.
13.
14.
Arabidopsis heterotrimeric G‐protein complex modulates pathogen‐associated molecular pattern‐triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gβ‐ (agb1‐2) or Gγ‐subunits have an altered wall composition compared with wild‐type plants. Here we performed a mutant screen to identify suppressors of agb1‐2 (sgb) that restore susceptibility to pathogens to wild‐type levels. Out of the four sgb mutants (sgb10–sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant‐specific polysaccharide O‐acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1‐7) of ESK1 restore to wild‐type levels the enhanced susceptibility of agb1‐2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1‐2 esk1‐7 double mutant was not the result of the re‐activation of deficient PTI responses in agb1‐2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan‐derived metabolites, and the accumulation of disease resistance‐related secondary metabolites and different osmolites. These esk1‐mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1‐2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI‐mediated resistance is partially compensated by the activation of specific cell‐wall‐triggered immune responses.  相似文献   

15.
  • We recently discovered that β‐aminobutyric acid (BABA), a molecule known for its ability to prime defences in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during pathogen infection, levels of BABA during plant growth and development and analysed mutants possibly involved in BABA transport or regulation.
  • BABA was quantified by LC‐MS using an improved method adapted from a previously published protocol. Systemic accumulation of BABA was determined by analysing non‐infected leaves and roots after localised infections with Plectosphaerella cucumerina or Pseudomonas syringae pv. tomato (Pst) DC3000 avrRpt2. The levels of BABA were also quantified in different plant tissues and organs during normal plant growth, and in leaves during senescence. Mutants affecting amino acid transport (aap6, aap3, prot1 and gat1), γ‐aminobutyric acid levels (pop2) and senescence/defence (cpr5‐2) were analysed.
  • BABA was found to accumulate only locally after bacterial or fungal infection, with no detectable increase in non‐infected systemic plant parts. In leaves, BABA content increased during natural and induced senescence. Reproductive organs had the highest levels of BABA, and the mutant cpr5‐2 produced constitutively high levels of BABA.
  • Synthetic BABA is highly mobile in the receiving plant, whereas endogenous BABA appears to be produced and accumulated locally in a tissue‐specific way. We discuss a possible role for BABA in age‐related resistance and propose a comprehensive model for endogenous and synthetic BABA.
  相似文献   

16.
The plant family 1 UDP‐glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR‐Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE‐binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP‐rhamnose to cyanidin and cyanidin 3‐O‐glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.  相似文献   

17.
High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H+‐PPase is involved in salt‐stimulated NO3? uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H+‐PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K+/Na+ ratio in leaves and exhibited increased NO3? uptake, inorganic pyrophosphate‐dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up‐regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up‐regulation of H+‐PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland.  相似文献   

18.
p‐Coumaroyl ester 3‐hydroxylase (C3′H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3′H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3H deficiency on the structure and properties of grass cell walls. C3H‐knockdown lines generated via RNA interference (RNAi)‐mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3H‐knockout rice mutants generated via CRISPR/Cas9‐mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3H‐knockdown RNAi lines revealed that their lignins were largely enriched in p‐hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non‐acylated lignin units, with grass‐specific γ‐p‐coumaroylated lignin units remaining apparently unchanged. Suppression of C3H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross‐linking ferulates. Collectively, our data demonstrate that C3H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross‐linking. We also demonstrated that C3H‐suppressed rice displays enhanced biomass saccharification.  相似文献   

19.
The overly zinc sensitive Arabidopsis thaliana mutant ozs3 shows reduced growth of the primary root, which is exacerbated by an excess specifically of Zn ions. In addition, ozs3 plants display various subtle developmental phenotypes, such as longer petioles and early flowering. Also, ozs3 seedlings are completely but reversibly growth‐arrested when shifted to 4°C. The causal mutation was mapped to a gene encoding a putative substrate‐recognition receptor of cullin4 E3 ligases. OZS3 orthologous genes can be found in almost all eukaryotic genomes. Most species from Schizosaccharomyces pombe to Homo sapiens, and including A. thaliana, possess one ortholog. No functional data are available for these genes in any of the multicellular model systems. CRISPR‐Cas9‐mediated knockout demonstrated that a complete loss of OZS3 function is embryo‐lethal, indicating essentiality of OZS3 and its orthologs. The OZS3 protein interacts with the adaptor protein DAMAGED DNA BINDING1 (DDB1) in the nucleus. Thus, it is indeed a member of the large yet poorly characterized family of DDB1‐cullin4 associated factors in plants. Mutant phenotypes of ozs3 plants are apparently caused by the weakened DDB1–OZS3 interaction as a result of the exchange of a conserved amino acid near the conserved WDxR motif.  相似文献   

20.
The plant cell wall is a dynamic structure whose constant modification is necessary for plant cells to grow and divide. In the cell walls of chickpea (Cicer arietinum) there are at least four β‐galactosidases, whose presence and location in embryonic axes during the first 48 h of seed imbibition are discussed in this paper. We examined their roles as cell wall‐modifying enzymes in germinative and/or post‐germinative events. At the start of germination, only βV‐Gal, and to a lesser extent βIV‐Gal, appear in the axes before rupture of the testa, suggesting they are related to germination sensu stricto. Once the testa has broken, the four β‐galactosidases are involved in growth and differentiation of the axes. Immunolocation of the different proteins in axes, which in part confirms previous results in seedlings and plants, allows assignment of post‐germinative roles to βI‐Gal and βIII‐Gal as cell wall modifiers in vascular tissue elements. βIV‐Gal and βV‐Gal participate in the initial events of germination in which cell walls are involved: βV‐Gal in cell proliferation, detachment of root cap cells and initial vascular tissue differentiation; both of them in xylem maturation; and βIV‐Gal in thickening of the primary cell wall. Together with other cell wall‐modifying enzymes, such as expansins and XTH, chickpea galactosidases might function in a sequential order in turnover of the primary cell wall, allowing the elongation of embryonic axes during seed germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号