首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
γ‐Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABATs) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus‐induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABATs (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs‐ and SlGABATs‐silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH‐silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ‐hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ‐hydroxybutyrate and subsequent ROS accumulation under salt stress.  相似文献   

2.
3.
4.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

5.
Salt stress is a major environmental threat to meeting the food demands of an increasing global population. The identification and exploitation of salt adaption mechanisms in plants are therefore vital for crop breeding. We here define the rice mutant (sstm1) whose salt sensitivity was unambiguously assigned to a single T‐DNA insertion through segregational analysis following backcrossing to the wild type line. Insertion was within OsTSD2, which encoded a pectin methyltransferase. The sstm1 and allelic mutants, collectively known as tsd2, displayed higher content of Na+ and lower level of K+ in the shoot, which is likely to lead to reduced salt tolerance. Molecular analysis revealed reduced expression of the genes maintaining K+/Na+ homeostasis in tsd2, including OsHKT1;5, OsSOS1, and OsKAT1. Furthermore, OsTSD2 influenced ion distribution between the hull and the rice seed, which could improve food safety with heavy metal pollution. Amino acid levels tended to be increased in tsd2 mutants, implicating a role of pectin in the regulation of metabolism. Taken together, we have demonstrated an important facet of salt tolerance, which implicated OsTSD2‐mediated cell wall pectin modification as a key component that could be widely applied in crop science.  相似文献   

6.
In the present study, three Arabidopsis thaliana pop2 mutant lines with different T-DNA insertions in a gene coding γ-aminobutyric acid transaminase (GABA-TA) were screened for seed germination percentage, stress-induced oxidative damage, and GABA content and metabolism under various abiotic stresses including high temperature (42 °C), low temperature (4 °C), salinity (NaCl), and osmotic stress (mannitol). All mutant lines showed a decreased germination under all the stress treatments with a significant reduction in the pop2-1 and pop2-3 mutant lines. Content of GABA and MDA increased significantly in all pop2 mutants and wild type (WT) seedlings in response to all the treatments. However, content of GABA and MDA was lower in all pop2 mutants comparing to the WT under the same treatments. GABA increased already after 30 min and increased significantly after 2 h at 42 °C especially in the pop2-3 and WT seedlings. In response to the cold treatment, GABA content increased up to 4-fold compared to the control in all pop2 mutants and WT seedlings. In response to the NaCl treatment, GABA accumulated slightly in the WT and all pop2 mutants. On the contrary, GABA content increased significantly in the pop2, pop2-1, and pop2-3 mutants and WT under all mannitol treatments.  相似文献   

7.
8.
Grafting onto salt‐tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na+ to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na+ in salt‐tolerant pumpkin and salt‐sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion‐selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na+, and a correspondingly increased H+ influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na+/H+ exchange in the root was inhibited by amiloride (a Na+/H+ antiporter inhibitor) or vanadate [a plasma membrane (PM) H+‐ATPase inhibitor], indicating that Na+ exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na+/H+ antiporter across the PM, and the Na+/H+ antiporter system in salt stressed pumpkin roots was sufficient to exclude Na+. X‐ray microanalysis showed higher Na+ in the cortex, but lower Na+ in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na+, limit the radial transport of Na+ to the stele and thus restrict the transport of Na+ to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na+ to the shoot than cucumber roots.  相似文献   

9.
10.
11.
The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho‐related GTPase from plants (ROPs) and a known microtubule‐associated protein. In this study, we demonstrated that RIC1 expression decreased with long‐term NaCl treatment, and ric1‐1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2‐1 ric1‐1 double mutant rescued the salt‐sensitive phenotype of rop2‐1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2‐RIC1 pathway that fine‐tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance.  相似文献   

12.
  • Heat stress decreases crop growth and yield worldwide. Spermidine (Spd) is a small aliphatic amine and acts as a ubiquitous regulator for plant growth, development and stress tolerance.
  • Objectives of this study were to determine effects of exogenous Spd on changes in endogenous polyamine (PA) and γ‐aminobutyric acid (GABA) metabolism, oxidative damage, senescence and heat shock protein (HSP) expression in white clover subjected to heat stress. Physiological and molecular methods, including colorimetric assay, high performance liquid chromatography and qRT‐PCR, were applied.
  • Results showed that exogenous Spd significantly alleviated heat‐induced stress damage. Application of Spd not only increased endogenous putrescine, Spd, spermine and total PA accumulation, but also accelerated PA oxidation and improved glutamic acid decarboxylase activity, leading to GABA accumulation in leaves under heat stress. The Spd-pretreated white clover maintained a significantly higher chlorophyll (Chl) content than untreated plants under heat stress, which could be related to the roles of Spd in up‐regulating genes encoding Chl synthesis (PBGD and Mg‐CHT) and maintaining reduced Chl degradation (PaO and CHLASE) during heat stress. In addition, Spd up‐regulated HSP70, HSP70B and HSP70‐5 expression, which might function in stabilizing denatured proteins and helping proteins to folding correctly in white clover under high temperature stress.
  • In summary, exogenous Spd treatment improves the heat tolerance of white clover by altering endogenous PA and GABA content and metabolism, enhancing the antioxidant system and HSP expression and slowing leaf senescence related to an increase in Chl biosynthesis and a decrease in Chl degradation during heat stress.
  相似文献   

13.
14.
15.
Indoleamines regulate a variety of physiological functions during the growth, morphogenesis and stress‐induced responses in plants. Present investigations report the effect of NaCl stress on endogenous serotonin and melatonin accumulation and their differential spatial distribution in sunflower (Helianthus annuus) seedling roots and cotyledons using HPLC and immunohistochemical techniques, respectively. Exogenous serotonin and melatonin treatments lead to variable effect on hypocotyl elongation and root growth under NaCl stress. NaCl stress for 48 h increases endogenous serotonin and melatonin content in roots and cotyledons, thus indicating their involvement in salt‐induced long distance signaling from roots to cotyledons. Salt stress‐induced accumulation of serotonin and melatonin exhibits differential distribution in the vascular bundles and cortex in the differentiating zones of the primary roots, suggesting their compartmentalization in the growing region of roots. Serotonin and melatonin accumulation in oil body rich cells of salt‐treated seedling cotyledons correlates with longer retention of oil bodies in the cotyledons. Present investigations indicate the possible role of serotonin and melatonin in regulating root growth during salt stress in sunflower. Effect of exogenous serotonin and melatonin treatments (15 μM) on sunflower seedlings grown in the absence or presence of 120 mM NaCl substantiates their role on seedling growth. Auxin and serotonin biosynthesis are coupled to the common precursor tryptophan. Salt stress‐induced root growth inhibition, thus pertains to partial impairment of auxin functions caused by increased serotonin biosynthesis. In seedling cotyledons, NaCl stress modulates the activity of N‐acetylserotonin O‐methyltransferase (HIOMT; EC 2.1.1.4), the enzyme responsible for melatonin biosynthesis from N‐acetylserotonin.  相似文献   

16.
A traditional 2‐oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2‐oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Δsll1981, Δslr0370, Δslr1022 and combinations thereof, deficient in 2‐oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in γ‐aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N‐acetylornithine aminotransferase, encoded by slr1022, was shown to also function as γ‐aminobutyrate aminotransferase, catalysing γ‐aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact γ‐aminobutyrate shunt is present in Synechocystis. The Δsll1981 strain, lacking 2‐oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Δslr1022 and Δslr0370 strains and the Δsll1981/Δslr1022 and Δsll1981/Δslr0370 double mutants was reduced to 20–40% of that in wild type, suggesting that the γ‐aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2‐oxoglutarate decarboxylase. 13C‐stable isotope analysis indicated that the γ‐aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2‐oxoglutarate decarboxylase bypass, the γ‐aminobutyrate shunt is a major contributor to flux from 2‐oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.  相似文献   

17.
Intracellular free amino acid pools were quantified in suspension cultured cells of a blast‐sensitive and a blast‐resistant rice genotype at increasing times after treatment with Magnaporthe oryzae cell wall hydrolysates. Besides some expected variations in free phenylalanine, a remarkable early increase of γ‐aminobutyric acid (GABA) levels was evident in both cultivars. Glutamate decarboxylase activity and protein levels were unaffected. GABA homeostasis was recovered in the sensitive cultivar 48 h after the treatment. In contrast, a further GABA accumulation and a general increase of most amino acids was found at this later stage in the resistant genotype, which showed a larger decrease in cell viability as a consequence of elicitor addition. Data support a recently hypothesised role of GABA metabolism in the plant response to fungal pathogens.  相似文献   

18.
Abscisic acid (ABA), salicylic acid (SA) and γ‐aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5‐oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress‐defense secondary metabolism by GABA.  相似文献   

19.
Thermal denaturation and circular dichroism (CD) properties of poly(L -lysine)–DNA complexes vary greatly when these complexes are prepared differently, that is, whether by NaCl-gradient dialysis starting from 2.0 M NaCl or by direct mixing at low salt. These differing properties were investigated in more detail by examining complexes, made by direct mixing in the presence of various concentrations of NaCl, both before and after the NaCl was dialyzed out of the complex solution. The precipitation curves of DNA due to polylysine binding indicate that such binding is noncooperative at zero salt; from 0.1 up to 1.0 M NaCl they exhibit varying degrees of cooperatively. Starting from zero salt, as the NaCl concentration used for complex formation is increased, both the CD and the melting properties of the complexes are shifted from those of directly mixed at zero salt to those of reconstitution: in the CD spectra there is a gradual shift from a B → C transition to a B → ψ transition; thermal denaturation results show a gradual increase in the melting temperatures of both free DNA (tm) and polylysine-bound DNA (tm). The progressive shift from B → C to B → ψ suggests a close relationship between these two transitions. Large aggregates of the complexes do not warrant the appearance of ψ-type CD spectra: ψ-spectra have been obtained in the supernatants of polylysine–DNA complexes made and measured at 1.0 M NaCl while slightly perturbed CD spectra in B → C transition have been observed in turbid solutions of fully covered complexes made at very low salt. If the complexes are made at intermediate salts and dialyzed to a very low salt, although up to 60% of the DNA is still bound by polylysine, the CD spectra of the complexes are shifted back to the B-type CD characteristic of pure DNA.  相似文献   

20.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号