首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The holin function Ejh of the pneumococcal bacteriophage EJ-1 has been characterized. It shows structural features similar to, and functionally complemented, the prototype member of the holin family. In Escherichia coli and Pseudomonas putida the Ejh product caused cellular death, and changes in cell morphology could be accounted for by lesions in the cytoplasmic membrane. Expression of ejh resulted in the inhibition of growth in a variety of phylogenetically distant bacterial genera, suggesting a broad spectrum of action. Concomitant expression of the ejh and ejl (encodes a lysin) genes led to lysis of E. coli and P. putida cells. Remarkably, the Ejl lysin was able to attack murein from bacteria lacking choline in their sacculi, which suggests that pneumococcal lysins have a broader substrate specificity than previously assumed. Furthermore, the Ejh holin was able to trigger activity of the major pneumococcal autolysin cloned and expressed in E. coli , and this raised new questions about the regulation of this model autolysin. A new function for holins in systems where the phage lysin is supposed to be associated with the membrane is proposed.  相似文献   

2.
The two lysis genes cph1 and cpl1 of the Streptococcus pneumoniae bacteriophage Cp-1 coding for holin and lysozyme, respectively, have been cloned and expressed in Escherichia coli. Synthesis of the Cph1 holin resulted in bacterial cell death but not lysis. The cph1 gene was able to complement a lambda Sam mutation in the nonsuppressing E. coli HB101 strain to produce phage progeny, suggesting that the holins encoded by both phage genes have analogous functions and that the pneumococcal holin induces a nonspecific lesion in the cytoplasmic membrane. Concomitant expression of both holin and lysin of Cp-1 in E. coli resulted in cell lysis, apparently due to the ability of the Cpl1 lysozyme to hydrolyze the peptidoglycan layer of this bacterium. The functional analysis of the cph1 and cpl1 genes cloned in a pneumococcal mutant with a complete deletion of the lytA gene, which codes for the S. pneumoniae main autolysin, provided the first direct evidence that, in this gram-positive-bacterium system, the Cpl1 endolysin is released to its murein substrate through the activity of the Cph1 holin. Demonstration of holin function was achieved by proving the release of pneumolysin to the periplasmic fraction, which strongly suggested that the holin produces a lesion in the pneumococcal membrane.  相似文献   

3.
4.
The conjugative plasmid pTR2030 has been used extensively to confer phage resistance in commercial Lactococcus starter cultures. The plasmid harbors a 16-kb region, flanked by insertion sequence (IS) elements, that encodes the restriction/modification system LlaI and carries an abortive infection gene, abiA. The AbiA system inhibits both prolate and small isometric phages by interfering with the early stages of phage DNA replication. However, abiA alone does not account for the full abortive activity reported for pTR2030. In this study, a 7.5-kb region positioned within the IS elements and downstream of abiA was sequenced to reveal seven additional open reading frames (ORFs). A single ORF, designated abiZ, was found to be responsible for a significant reduction in plaque size and an efficiency of plaquing (EOP) of 10(-6), without affecting phage adsorption. AbiZ causes phage phi31-infected Lactococcus lactis NCK203 to lyse 15 min early, reducing the burst size of phi31 100-fold. Thirteen of 14 phages of the P335 group were sensitive to AbiZ, through reduction in either plaque size, EOP, or both. The predicted AbiZ protein contains two predicted transmembrane helices but shows no significant DNA homologies. When the phage phi31 lysin and holin genes were cloned into the nisin-inducible shuttle vector pMSP3545, nisin induction of holin and lysin caused partial lysis of NCK203. In the presence of AbiZ, lysis occurred 30 min earlier. In holin-induced cells, membrane permeability as measured using propidium iodide was greater in the presence of AbiZ. These results suggest that AbiZ may interact cooperatively with holin to cause premature lysis.  相似文献   

5.
Most bacteriophages (phages) release their progeny through the action of holins that form lesions in the cytoplasmic membrane and lysins that degrade the bacterial peptidoglycan. Although the function of each protein is well established in phages infecting Streptococcus pneumoniae, the role—if any—of the powerful bacterial autolysin LytA in virion release is currently unknown. In this study, deletions of the bacterial and phage lysins were done in lysogenic S. pneumoniae strains, allowing the evaluation of the contribution of each lytic enzyme to phage release through the monitoring of bacterial-culture lysis and phage plaque assays. In addition, we assessed membrane integrity during phage-mediated lysis using flow cytometry to evaluate the regulatory role of holins over the lytic activities. Our data show that LytA is activated at the end of the lytic cycle and that its triggering results from holin-induced membrane permeabilization. In the absence of phage lysin, LytA is able to mediate bacterial lysis and phage release, although exclusive dependence on the autolysin results in reduced virion egress and altered kinetics that may impair phage fitness. Under normal conditions, activation of bacterial LytA, together with the phage lysin, leads to greater phage progeny release. Our findings demonstrate that S. pneumoniae phages use the ubiquitous host autolysin to accomplish an optimal phage exiting strategy.Streptococcus pneumoniae (pneumococcus), a common and important human pathogen, is characterized by the high incidence of lysogeny in isolates associated with infection (34, 44). Pneumococcal bacteriophages (phages) share with the majority of bacteriophages infecting other bacterial species the “holin-lysin” system to lyse the host cell and release their progeny at the end of the lytic cycle. Genes encoding both holins and lysins (historically termed “endolysins”) are indeed found in the genomes of all known pneumococcal phages (8, 28, 31, 37). Supporting this mechanism, a lytic phenotype in the heterologous Escherichia coli system was achieved only by the simultaneous expression of the Ejh holin and the Ejl endolysin of pneumococcal phage EJ-1 (8). When these proteins were independently expressed, cellular lysis was not perceived. Similar results were shown for pneumococcal phage Cp-1, not only in E. coli, but also in the pneumococcus itself (28).Phage lysins destroy the pneumococcal peptidoglycan network due to their muralytic activity, whereas holins have been shown in S. pneumoniae to form nonspecific lesions (8), most likely upon a process of oligomerization in the cytoplasmic membrane, as observed for the E. coli phage λ (13, 14, 43). It was generally proposed that holin lesions allow access of phage lysins to the cell wall (52, 54), as the majority of phage lysins, including the pneumococcal endolysins, lack a typical N-terminal secretory signal sequence and transmembrane domains (8). However, recent evidence also highlights the possibility for a holin-independent targeting of phage lysins to the cell wall, where holin lesions seem to be crucial for the activation of the already externalized phage lysins (42, 50, 51). Regardless of the mechanism operating in S. pneumoniae to activate phage lysins, holin activity compromises membrane integrity.Pneumococcal cells present their own autolytic activity, mainly due to the presence of a powerful bacterial cell wall hydrolase, LytA (an N-acetylmuramoyl-l-alanine-amidase), responsible for bacterial lysis under certain physiological conditions (47). Although other bacterial species also encode peptidoglycan hydrolases, the extensive lysis shortly after entering stationary phase caused by LytA is a unique feature of S. pneumoniae. Interestingly, LytA is translocated across the cytoplasmic membrane to the cell wall—where it remains inactive—in spite of the absence of a canonical N-terminal sequence signal (7). In the cell wall, autolysin activities are tightly regulated by mechanisms that seem to be related to the energized state of the cell membrane. In fact, depolarizing agents are able to trigger autolysis in Bacillus subtilis (16, 17), and bacteriocin-induced depletion of membrane potential triggers autolysis of some species of the genera Lactococcus and Lactobacillus, closely related to streptococci (29). It is therefore possible that the holin-inflicted perturbations of the S. pneumoniae cytoplasmic membrane upon the induction of the lytic cycle may trigger not only the lytic activity of the phage lysin, but also that of inactive LytA located in the cell wall. Accordingly, LytA could also participate in the release of phage particles at the end of the infectious cycle, especially considering its powerful autolytic activity. Previous studies have suggested a role for the host autolytic enzyme in the release of phage progeny (11, 38), but in fact, the evidence is unclear and dubious, considering that the existence of phage-encoded lysins was unknown or very poorly understood and some of the experimental conditions used to show a role of LytA could have also affected the activity of the phage lysin (38).To clarify the possible role of the bacterial autolysin in host lysis, we used the S. pneumoniae strain SVMC28, lysogenic for the SV1 prophage (34), which contains a typical “holin-lysin” cassette, and a different host strain lysogenized with the same SV1 phage. Our results show that LytA is activated by the holin-induced membrane disruption, just like the phage endolysin. In the absence of the endolysin, LytA is capable of mediating host lysis, releasing functional phage particles able to complete their life cycle. Still, sole dependence on LytA results in an altered pattern of phage release that may reduce phage fitness. Importantly, we also show that, together with the endolysin, the concurrent LytA activation is critical for optimal phage progeny release.  相似文献   

6.
Bacteriophage lysis: mechanism and regulation.   总被引:42,自引:0,他引:42       下载免费PDF全文
Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E.  相似文献   

7.
The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gramnegative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanin and i-spanin, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the outer membrane is to catalyze fusion of the inner and outer membranes.  相似文献   

8.
Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective lambda holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products.  相似文献   

9.
Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective λ holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products.  相似文献   

10.
Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.  相似文献   

11.
结核病仍旧威胁着全球人类健康,中国是结核病高发国家之一,寻求新的药物和疫苗势在必行。随着对噬菌体研究的深入,分枝杆菌噬菌体成为结核病新型药物发现和药敏实验的研究热点之一。噬菌体进入宿主菌体内,以裂解和溶源两种途径进入循环。以分枝杆菌的溶源性噬菌体为例,综述了分枝杆菌噬菌体整合和裂解分子机理。分枝杆菌溶源性噬菌体的整合需噬菌体基因组的附着位点attachment site(attP),宿主菌分枝杆菌基因组的附着位点attachment site(attB),整合酶integrase(Int)和整合宿主因子integration host factor(mIHF)。部分溶源性噬菌体如Ms6进入裂解循环,复制转录组装成新的子代噬菌体,在裂解素(Lysin)和穿孔素(Holin)的协同作用下裂解宿主菌,释放子代噬菌体。目前国内未见对分枝杆菌噬菌体的研究报道。研究分枝杆菌噬菌体整合及裂解机理对结核病治疗新药开发有一定的启示。  相似文献   

12.
PblA and PblB are prophage-encoded proteins of Streptococcus mitis strain SF100 that mediate binding to human platelets. The mechanism for surface expression of these proteins has been unknown, as they do not contain signal sequences or cell wall sorting motifs. We therefore assessed whether expression of these proteins was linked the lytic cycle of the prophage. Deletion of either the holin or lysin gene resulted in retention of PblA and PblB in the cytoplasm, and loss of these proteins from the cell wall. Flow cytometric analysis revealed that induction of phage replication in SF100 produced a subpopulation of cells with increased permeability. This effect was abrogated by disruption of the holin and lysin genes. Treatment of these mutants with exogenous PblA and PblB restored surface expression, apparently via binding of the proteins to cell wall choline. Loss of PblA and PblB expression was associated with decreased platelet binding in vitro, and reduced virulence in an animal model of endocarditis. Thus, expression of PblA and PblB occurs via a novel mechanism, whereby phage induction increases bacterial permeability and release of the proteins, followed by their binding to surface of viable cells. This mechanism may be important for endovascular infection.  相似文献   

13.
Bacteriophage Tuc2009 is a temperate bacteriophage with a small isometric head and is isolated from Lactococcus lactis subsp. cremoris UC509. The phage genome is packaged by a headful mechanism, giving rise to circularly permuted molecules with terminal redundancy. The unit genome size is approximately 39 kb. A map of the phage genome on which several determinants could be localized was constructed: pac, the site of initiation of DNA packaging; lys (1,287 bp), specifying the phage lysin; S (267 bp), specifying a putative holin; and mp1 (522 bp) and mp2 (498 bp), each specifying one of the phage's structural proteins. lys, S, mp1, and mp2 were further characterized. lys and S are partially overlapping and appear to be part of one operon. The lysin shows homology to the lysins of the Streptococcus pneumoniae phages Cp-9, Cp-1, and Cp-7. The putative holin, which is thought to be involved in the release of lysin from the cytoplasm, contains two strongly hydrophobic presumptive transmembrane domains and a highly charged C-terminal domain.  相似文献   

14.
Abstract: During the lytic cycle of most bacteriophages, a phage-encoded peptidoglycan-degrading activity is elaborated. At least four entirely distinct types of enzymes fulfill this role and are given the generic name 'endolysin'. Endolysins characterized to date are synthesized without a signal sequence and thus accumulate fully folded and active in the cytosol during the vegetative phase. Small membrane proteins are required in order for endolysins to gain access to the peptidoglycan. Because the available data suggest that the membrane lesion formed by these proteins is stable and non-specific, these proteins have been given the designation 'holins' ('hole'-formers). Analysis of the primary sequence suggests a simple membrane topology with two or more membrane-spanning helical domains and a highly charged, hydrophilic C-terminus. Comparison of the sequences of holins from phages of Gram-negative hosts suggests there are at least two major holin groups. Putative holin genes have also been found in bacteriophages of Gram-positive bacteria. Altogether, in phages of Eubacteria, 11 or more unrelated gene families which share the functional and structural characteristics of holins have been identified. Genetic and physiological analysis suggest that holins are primarily regulated at the level of function. Holin function is modulated in some cases by a second protein encoded by the holin gene. The primary regulation of holin function, however, appears to be intrinsic to the holin structure itself, since a missense allele of the S holin gene of phage λ has been found which abolishes the normal delay that allows the vegetative phase to generate a useful number of progeny.  相似文献   

15.
16.
Holin proteins are phage-induced integral membrane proteins which regulate the access of lytic enzymes to host cell peptidoglycan at the time of release of progeny viruses by host cell lysis. We describe the identification of the membrane-containing phage PRD1 holin gene (gene XXXV). The PRD1 holin protein (P35, 12.8 kDa) acts similarly to its functional counterpart from phage lambda (gene S), and the defect in PRD1 gene XXXV can be corrected by the presence of gene S of lambda. Several nonsense, missense, and insertion mutations in PRD1 gene XXXV were analyzed. These studies support the overall conclusion that the charged amino acids at the protein C terminus are involved in the timing of host cell lysis.  相似文献   

17.
C(1), a lytic bacteriophage infecting group C streptococci, is one of the earliest-isolated phages, and the method of bacterial classification known as phage typing was defined by using this bacteriophage. We present for the first time a detailed analysis of this phage by use of electron microscopy, protein profiling, and complete nucleotide sequencing. This virus belongs to the Podoviridae family of phages, all of which are characterized by short, noncontractile tails. The C(1) genome consists of a linear double-stranded DNA molecule of 16,687 nucleotides with 143-bp inverted terminal repeats. We have assigned functions to 9 of 20 putative open reading frames based on experimental substantiation or bioinformatic analysis. Their products include DNA polymerase, holin, lysin, major capsid, head-tail connector, neck appendage, and major tail proteins. Additionally, we found one intron belonging to the HNH endonuclease family interrupting the apparent lysin gene, suggesting a potential splicing event yielding a functional lytic enzyme. Examination of the C(1) DNA polymerase suggests that this phage utilizes a protein-primed mechanism of replication, which is prominent in the phi29-like members of Podoviridae. Consistent with this evidence, we experimentally determined that terminal proteins are covalently attached to both 5' termini, despite the fact that no homology to known terminal proteins could be elucidated in any of our open reading frames. Likewise, comparative genomics revealed no close evolutionary matches, suggesting that the C(1) bacteriophage is a unique member of the Podoviridae.  相似文献   

18.
For most large phages of both Gram-positive and Gram-negative bacteria, there appears to be a single pathway for achieving disruption of the host envelope, requiring at least two phage-encoded lysis functions (a holin and an endolysin). The holin is a small membrane protein which causes a non-specific lesion in the cytoplasmic membrane, which allows the endolysin to gain access to its substrate, the peptidoglycan. The scheduling of host lysis is effected by regulatory mechanisms which govern the synthesis and activity of the holin protein accumulating in the membrane. Accordingly, aspects of expression and function of holin genes are considered here, focusing mainly on the lambdoid S genes. This group of genes, of which lambda S is the prototype, are characterized by a dual-start motif consisting of two Met start codons separated by one or two codons, at least one of which specifies Arg or Lys. Two protein products are elaborated, differing only by two or three N-terminal residues but apparently possessing opposing functions: the shorter polypeptide is the active holin, or lysis-effector, whereas the longer polypeptide apparently acts as an inhibitor of holin function. Models will be considered which may account for the ability of the holin to form a 'hole' in the cytoplasmic membrane at a programmed time, as well as for the inhibitory properties of the longer product. Finally, we discuss recent results suggesting that the dual-start motif can be viewed as a level of regulation superimposed on a timing function intrinsic to the canonical holin structure.  相似文献   

19.
Gram-positive bacterial extracellular membrane vesicles (EVs) have been drawing more attention in recent years. However, mechanistic insights are still lacking on how EVs are released through the cell walls in Gram-positive bacteria. In this study, we characterized underlying mechanisms of EV production and provide evidence for a role of prophage activation in EV release using the Gram-positive bacterium Lactococcus lactis as a model. By applying a standard EV isolation procedure, we observed the presence of EVs in the culture supernatant of a lysogenic L. lactis strain FM-YL11, for which the prophage-inducing condition led to an over 10-fold increase in EV production in comparison with the non-inducing condition. In contrast, the prophage-encoded holin–lysin knockout mutant YL11ΔHLH and the prophage-cured mutant FM-YL12 produced constantly low levels of EVs. Under the prophage-inducing condition, FM-YL11 did not show massive cell lysis. Defective phage particles were found to be released in and associated with holin–lysin-induced EVs from FM-YL11, as demonstrated by transmission electron microscopic images, flow cytometry and proteomics analysis. Findings from this study further generalized the EV-producing phenotype to Gram-positive L. lactis, and provide additional insights into the EV production mechanism involving prophage-encoded holin–lysin system. The knowledge on bacterial EV production can be applied to all Gram-positive bacteria and other lactic acid bacteria with important roles in fermentations and probiotic formulations, to enable desired release and delivery of cellular components with nutritional values or probiotic effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号