首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase whose dysfunction results in cognitive impairment and Alzheimer-like pathology, including tau hyperphosphorylation. However, the mechanisms whereby GRK5 influences tau phosphorylation remain incompletely understood. In the current study, we showed that GRK5 influenced the phosphorylation of tau via glycogen synthase kinase 3β (GSK3β). The activity of both tau and GSK3β in the hippocampus was increased in aged GRK5-knockout mice, which is consistent with what occurs in APP/PS1 transgenic mice. Furthermore, GRK5 regulated the activity of GSK3β and phosphorylated tau in vitro. Regardless of changes of GRK5 protein levels, tau hyperphosphorylation remained reduced after GSK3β activity was inhibited, suggesting that GRK5 may specifically influence tau hyperphosphorylation by modulating GSK3β activity. Taken together, our findings suggest that GRK5 deficiency contributes to the pathogenesis of Alzheimer's disease by influencing the hyperphosphorylation of tau through the activation of GSK3β.  相似文献   

2.
3.
Muscle fiber degeneration in sporadic inclusion‐body myositis (s‐IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid‐β (Aβ)‐precursor protein 751 (AβPP751), Aβ, phosphorylated tau, and other ‘Alzheimer‐characteristic’ proteins. Proteasome inhibition is an important component of the s‐IBM pathogenesis. In brains of Alzheimer’s disease (AD) patients and AD transgenic‐mouse models, phosphorylation of neuronal AβPP695 (p‐AβPP) on Thr668 (equivalent to T724 of AβPP751) is considered detrimental because it increases generation of cytotoxic Aβ and induces tau phosphorylation. Activated glycogen synthase kinase3β (GSK3β) is involved in phosphorylation of both AβPP and tau. Lithium, an inhibitor of GSK3β, was reported to reduce levels of both the total AβPP and p‐AβPP in AD animal models. In relation to s‐IBM, we now show for the first time that (1) In AβPP‐overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3β activity and AβPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated‐AβPP, (ii) total amount of AβPP, (iii) Aβ oligomers, and (iv) GSK3β activity; and (c) lithium improves proteasome function. (2) In biopsied s‐IBM muscle fibers, GSK3β is significantly activated and AβPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3β inhibitors, might benefit s‐IBM patients.  相似文献   

4.
Alzheimer's disease (AD) is the most common form of neurodegenerative disorder with dementia, accounting for approximately 70% of the all cases. Currently, 5.8 million people in the U.S. are living with AD and by 2050 this number is expected to double resulting in a significant socio-economic burden. Despite intensive research, the exact mechanisms that trigger AD are still not known and at the present there is no cure for it. In recent years, many signaling pathways associated with AD neuropathology have been explored as possible candidate targets for the treatment of this condition including glycogen synthase kinase-3β (GSK3-β). GSK3-β is considered a key player in AD pathophysiology since dysregulation of this kinase influences all the major hallmarks of the disease including: tau phosphorylation, amyloid-β production, memory, neurogenesis and synaptic function. The present review summarizes the current understanding of the GSK3-β neurobiology with particular emphasis on its effects on specific signaling pathways associated with AD pathophysiology. Moreover, it discusses the feasibility of targeting GSK3-β for AD treatment and provides a summary of the current research effort to develop GSK3-β inhibitors in preclinical and clinical studies.  相似文献   

5.
Glycogen synthase kinase-3β (GSK3β) is recognized as one of major kinases to phosphorylate tau in Alzheimer’s disease (AD), thus lots of AD drug discoveries target GSK3β. However, the inactive form of GSK3β which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3β substrates, such as β-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3β at serine-9 and other substrates including tau, β-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3β inhibitors such as lithium chloride and 6-bromoindirubin-3′-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3β may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3β inhibitors could be a valuable drug candidate in AD.  相似文献   

6.
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells.  相似文献   

7.
8.
The perinuclear stacks of the Golgi apparatus maintained by dynamic microtubules are essential for cell migration. Activation of Akt (protein kinase B, PKB) negatively regulates glycogen synthase kinase 3β (GSK3β)-mediated tau phosphorylation, which enhances tau binding to microtubules and microtubule stability. In this study, experiments were performed on developmentally regulated GTP-binding protein 2 (DRG2)-stably knockdown HeLa cells to determine whether knockdown of DRG2 in HeLa cells treated with epidermal growth factor (EGF) affects microtubule dynamics, perinuclear Golgi stacking, and cell migration. Here, we show that DRG2 plays a key role in regulating microtubule stability, perinuclear Golgi stack formation, and cell migration. DRG2 knockdown prolonged the EGF receptor (EGFR) localization in endosome, enhanced Akt activity and inhibitory phosphorylation of GSK3β. Tau, a target of GSK3β, was hypo-phosphorylated in DRG2-knockdown cells and showed greater association with microtubules, resulting in microtubule stabilization. DRG2-knockdown cells showed defects in microtubule growth and microtubule organizing centers (MTOC), Golgi fragmentation, and loss of directional cell migration. These results reveal a previously unappreciated role for DRG2 in the regulation of perinuclear Golgi stacking and cell migration via its effects on GSK3β phosphorylation, and microtubule stability.  相似文献   

9.
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase that is involved in the multiple signaling processes of a cell. Increasing evidence suggests that GSK3β plays a key role in multiple cellular processes in the progression of diabetes, obesity, Alzheimer's disease (AD), Parkinson's disease (PD), inflammatory diseases, schizophrenia, bipolar and several mood disorders, and mitochondrial diseases. Recent research has found that increased GSK3β activity is linked to the pathogenesis of AD through amyloid beta (Aβ), phosphorylated tau and mitochondrial dysfunction. Recent research has also revealed that GSK3β is elevated in AD-affected tissues and is critically involved in dissociating the voltage-dependent anion channel 1 (VDAC1) protein from hexokinases, and causing disrupted glucose metabolism, mitochondrial dysfunction and activating apoptotic cell death. The purpose of this article is to review recent research that is elucidating the role of GSK3β in AD pathogenesis. We discuss the involvement of GSK3β in the phosphorylation of VDAC1 and dissociation of VADC1 with hexokinases in AD neurons.  相似文献   

10.
The two estrogen receptors (ERs), ERα and ERβ, mediate the diverse biological functions of estradiol. Opposite effects of ERα and ERβ have been found in estrogen‐induced cancer cell proliferation and differentiation as well as in memory‐related tasks. However, whether these opposite effects are implicated in the pathogenesis of Alzheimer's disease (AD) remains unclear. Here, we find that ERα and ERβ play contrasting roles in regulating tau phosphorylation, which is a pathological hallmark of AD. ERα increases the expression of miR‐218 to suppress the protein levels of its specific target, protein tyrosine phosphatase α (PTPα). The downregulation of PTPα results in the abnormal tyrosine hyperphosphorylation of glycogen synthase kinase‐3β (resulting in activation) and protein phosphatase 2A (resulting in inactivation), the major tau kinase and phosphatase. Suppressing the increased expression of miR‐218 inhibits the ERα‐induced tau hyperphosphorylation as well as the PTPα decline. In contrast, ERβ inhibits tau phosphorylation by limiting miR‐218 levels and restoring the miR‐218 levels antagonized the attenuation of tau phosphorylation by ERβ. These data reveal for the first time opposing roles for ERα and ERβ in AD pathogenesis and suggest potential therapeutic targets for AD.  相似文献   

11.
Glycogen synthase kinase‐3 (GSK3) is an important signalling protein in the brain and modulates different forms of synaptic plasticity. Neuronal functions of GSK3 are typically attributed to one of its two isoforms, GSK3β, simply because of its prevalent expression in the brain. Consequently, the importance of isoform‐specific functions of GSK3 in synaptic plasticity has not been fully explored. We now directly address this question for NMDA receptor‐dependent long‐term depression (LTD) in the hippocampus. Here, we specifically target the GSK3 isoforms with shRNA knock‐down in mouse hippocampus and with novel isoform‐selective drugs to dissect their roles in LTD. Using electrophysiological and live imaging approaches, we find that GSK3α, but not GSK3β, is required for LTD. The specific engagement of GSK3α occurs via its transient anchoring in dendritic spines during LTD induction. We find that the major GSK3 substrate, the microtubule‐binding protein tau, is required for this spine anchoring of GSK3α and mediates GSK3α‐induced LTD. These results link GSK3α and tau in a common mechanism for synaptic depression and rule out a major role for GSK3β in this process.  相似文献   

12.
Overactivation of GSK3β (glycogen synthase kinase-3β) and downregulation of PP2A (protein phosphatase-2A) have been proposed to be involved in the abnormal tau phosphorylation and aggregation in Alzheimer’s disease (AD). GSK3β and PP2A signaling pathways were reported to be interconnected. Targeting tau kinases was suggested to represent a therapeutic strategy for AD. Here, tau phosphorylation and neuronal apoptosis were induced in cortical cultured neurons by the inhibition of PP2A by okadaic acid (OKA). In this in vitro model of ‘tau pathology’ and neurodegeneration, we tested whether GSK3β and other tau kinases including DYRK1A and CDK5 were implicated. Our results show that the inhibitors of GSK3β, lithium and 6-BIO (6-bromoindirubin-3′-oxime), prevented OKA-induced tau phosphorylation and neuronal apoptosis. The implication of GSK3β in these OKA-induced effects was confirmed by its silencing by hairpin siRNA. By contrast, inhibition of DYRK1A (dual-specificity tyrosine-phosphorylation regulated kinase-1A) and CDK5 (cyclin-dependent kinase-5) reversed OKA-induced tau phosphorylation at certain sites but failed to prevent neuronal apoptosis. These results indicate that OKA-induced effects, especially neuronal apoptosis, are preferentially mediated by GSK3β. Furthermore, since chronic exposure to lithium and 6-BIO might be deleterious for neurons, we tested the effect of a new 6-BIO derivative, 6-BIBEO (6-bromoindirubin-3′-(2-bromoethyl)-oxime), which is much less cytotoxic and more selectively inhibits GSK3β compared to lithium and 6-BIO. We show that 6-BIBEO efficiently reversed OKA-induced tau phosphorylation and neuronal apoptosis. It will be interesting to test neuroprotection by 6-BIBEO in an in vivo model of tau pathology and neurodegeneration.  相似文献   

13.
Abnormally active glycogen synthase kinase‐3 (GSK3) contributes to pathological processes in multiple psychiatric and neurological disorders. Modeled in mice, this includes increasing susceptibility to dysregulation of mood‐relevant behaviors, impairing performance in several cognitive tasks and impairing adult hippocampal neural precursor cell (NPC) proliferation. These deficits are all evident in GSK3α/β knockin mice, in which serine‐to‐alanine mutations block the inhibitory serine phosphorylation regulation of both GSK3 isoforms, leaving GSK3 hyperactive. It was unknown if both GSK3 isoforms perform redundant actions in these processes, or if hyperactivity of one GSK3 isoform has a predominant effect. To test this, we examined GSK3α or GSK3β knockin mice in which only one isoform was mutated to a hyperactive form. Only GSK3β, not GSK3α, knockin mice displayed heightened vulnerability to the learned helplessness model of depression‐like behavior. Three cognitive measures impaired in GSK3α/β knockin mice showed differential regulation by GSK3 isoforms. Novel object recognition was impaired in GSK3β, not in GSK3α, knockin mice, whereas temporal order memory was not impaired in GSK3α or GSK3β knockin mice, and co‐ordinate spatial processing was impaired in both GSK3α and GSK3β knockin mice. Adult hippocampal NPC proliferation was severely impaired in GSK3β knockin mice, but not impaired in GSK3α knockin mice. Increased activity of GSK3β, in the absence of overexpression or disease pathology, is sufficient to impair mood regulation, novel object recognition and hippocampal NPC proliferation, whereas hyperactive GSK3α individually does not impair these processes. These results show that hyperactivity of the two GSK3 isoforms execute non‐redundant effects on these processes.  相似文献   

14.
Abstract : Valproic acid (VPA) is a potent broad‐spectrum anti‐epileptic with demonstrated efficacy in the treatment of bipolar affective disorder. It has previously been demonstrated that both VPA and lithium increase activator protein‐1 (AP‐1) DNA binding activity, but the mechanisms underlying these effects have not been elucidated. However, it is known that phosphorylation of c‐jun by glycogen synthase kinase (GSK)‐3β inhibits AP‐1 DNA binding activity, and lithium has recently been demonstrated to inhibit GSK‐3β. These results suggest that lithium may increase AP‐1 DNA binding activity by inhibiting GSK‐3β. In the present study, we sought to determine if VPA, like lithium, regulates GSK‐3. We have found that VPA concentration‐dependently inhibits both GSK‐3α and ‐3β, with significant effects observed at concentrations of VPA similar to those attained clinically. Incubation of intact human neuroblastoma SH‐SY5Y cells with VPA results in an increase in the subsequent in vitro recombinant GSK‐3β‐mediated 32P incorporation into two putative GSK‐3 substrates (~85 and 200 kDa), compatible with inhibition of endogenous GSK‐3β by VPA. Consistent with GSK‐3β inhibition, incubation of SH‐SY5Y cells with VPA results in a significant time‐dependent increase in both cytosolic and nuclear β‐catenin levels. GSK‐3β plays a critical role in the CNS by regulating various cytoskeletal processes as well as long‐term nuclear events and is a common target for both lithium and VPA ; inhibition of GSK‐3β in the CNS may thus underlie some of the long‐term therapeutic effects of mood‐stabilizing agents.  相似文献   

15.
Although several studies have shown that type-2 cannabinoid receptor (CB2R) is involved in Alzheimer’s disease (AD) pathology, the effects of CB2R on AD-like tau abnormal phosphorylation and its underlying mechanism remain unclear. Herein, we employed the CB2R?/? mice as the animal model to explore roles of CB2R in regulating tau phosphorylation and brain function. We found that CB2R?/? mice display AD-like tau hyperphosphorylation, hippocampus-dependent memory impairment, increase of GSK3β activity, decrease of AMPK and Sirt1 activity and mitochondria dysfunction. Interestingly, AICAR or resveratrol (AMPK agonist) could efficiently rescue most alternations caused by solo deletion of CB2R in CB2R?/? mice. Moreover, JWH133, a selective agonist of CB2R, reduces phosphorylation of tau and GSK3β activity in HEK293 tau cells, but the effects of JWH133 on phosphorylation of tau and GSK3β disappeared while blocking AMPK activity with compound C or Prkaa2-RNAi. Taken together, our study indicated that deletion of CB2R induces behavior damage and AD-like pathological alternation via AMPK/GSK3β pathway. These findings proved that CB2R/AMPK/GSK3β pathway can be a promising new drug target for AD.  相似文献   

16.
BackgroundIn Alzheimer's disease (AD), abnormally phosphorylated tau in the somatodendrite compartment of brain neurons causes synaptic loss, resulting in neuron death. Although the mechanism by which hyperphosphorylated tau appears in dendrites remains unclear, we have previously reported that local translation of tau mRNA and GSK3β mRNA in response to glutamatergic stimulation triggers an increase of tau protein and initiation of a cycle for amplification of reactivated preexisting GSK3β, respectively. In this study, we investigated the mechanism responsible for neural excitation-dependent activation of another major tau kinase, CDK5, within dendrites.MethodsPrimary hippocampal neurons were treated with glutamate and examined by in situ hybridization, immunocytochemistry and Western blotting.ResultsThe mRNAs for both CDK5 and its neural-specific activator, p35, were found to be constitutively distributed in dendrites. Glutamate treatment induced immediate local dendritic translation of these proteins as well as conversion of p35 to p25, which forms the hyper-activated CDK5/p25 complex. This neural excitation-dependent tau phosphorylation by CDK5 was suppressed in the presence of a calpain inhibitor or a NMDA receptor antagonist.ConclusionOur results indicate that in addition to an increase of dendritic tau and reactivation of preexisting GSK3β, increase and hyper-activation of CDK5 are evoked by translation of dendrite-distributed mRNAs upon NMDA receptor-mediated neural excitation.General significanceHyperphosphorylated tau with AD epitopes is locally produced in dendrites via translational activation of dendrite-distributed mRNAs in response to glutamatergic stimulation. Therefore, tau hyperphosphorylation may play a crucial role in synaptic transduction.  相似文献   

17.
The inhibition of mTOR kinase after renal transplantation has been associated with podocyte injury and proteinuria; however, the signaling pathways regulating these effects are not well understood. We found that prolonged rapamycin treatment in podocytes leads to an increase in glycogen synthase kinase 3β (GSK3β) phosphorylation, resulting in inactivation of total GSK3β kinase activity. To investigate the cellular consequences of the inactivation of GSK3β, we used two inhibitors reducing kinase activity and studied the cross talk between GSK3 function and the Akt/mammalian target of rapamycin (mTOR) pathway. Both GSK3 inhibitors reduced the phosphorylation of the mTOR downstream target, p70(S6K), indicating that GSK3 inhibition in podocytes is able to cause similar effects as treatment with rapamycin. Moreover, GSK3 inhibition was accompanied by the reduced expression of slit diaphragm-associated proteins and resulted in an altered cytoskeletal structure and reduced motility of podocytes, suggesting that GSK3 kinase can modulate Akt/mTOR-dependent signaling in podocytes.  相似文献   

18.
Glycogen synthase kinase 3β (GSK‐3β) is a ubiquitous serine/threonine protein kinase involved in a number of signaling pathways. Previous studies have demonstrated a role for GSK‐3β in the synaptic plasticity underlying dopamine‐associated behaviors and diseases. Drug sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. However, the role of GSK‐3β in cocaine‐induced behavior sensitization has not been examined. The present study investigated the effects of chronic cocaine exposure on GSK‐3β activity in the nucleus accumbens (NAc) and determined whether changes in GSK‐3β activity in the NAc are associated with cocaine‐induced locomotor sensitization. We also explored whether blockade of GSK‐3β activity in the NAc inhibits the initiation and expression of cocaine‐induced locomotor sensitization in rats using systemic or brain region‐specific administration of the GSK‐3β inhibitors lithium chloride (LiCl) and SB216763. GSK‐3β activity in the NAc core, but not NAc shell, increased after chronic cocaine (10 mg/kg, i.p.) administration. The initiation and expression of cocaine‐induced locomotor sensitization was attenuated by systemic administration of LiCl (100 mg/kg, i.p.) or direct infusion of SB216763 (1 ng/side) into the NAc core, but not NAc shell. Collectively, these results indicate that GSK‐3β activity in the NAc core, but not NAc shell, mediates the initiation and expression of cocaine‐induced locomotor sensitization, suggesting that GSK‐3β may be a potential target for the treatment of cocaine addiction.  相似文献   

19.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

20.
The 5‐lipoxygenase (5LO) is a source of inflammatory leukotrienes and is upregulated in Alzheimer's disease and related tauopathies. However, whether it directly modulates tau phosphorylation and the development of its typical neuropathology in the absence of Aβ or is a secondary event during the course of the disease pathogenesis remains to be fully elucidated. The goal of this study was to evaluate the effect that pharmacologic blockade of this inflammatory pathway has on the phenotype of a transgenic mouse model of tauopathy, the P301S mice. Starting at 3 months of age, P301S mice were randomized to receive zileuton, a specific 5LO blocker, for 7 months; then, its effect on their behavioral deficits and neuropathology was assessed. Inhibition of leukotrienes formation was associated with a reduction in tau phosphorylation and an amelioration of memory and learning as well as synaptic integrity, which were secondary to a downregulation of the cdk5 kinase pathway. Our results demonstrate that the 5LO enzyme is a key player in modulating tau phosphorylation and pathology and that blockade of its enzymatic activity represents a desirable disease‐modifying therapeutic approach for tauopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号