首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roles of the Notch pathway proteins in normal adult vascular physiology and the pathogenesis of brain arteriovenous malformations are not well‐understood. Notch 1 and 4 have been detected in human and mutant mice vascular malformations respectively. Although mutations in the human Notch 3 gene caused a genetic form of vascular stroke and dementia, its role in arteriovenous malformations development has been unknown. In this study, we performed immunohistochemistry screening on tissue microarrays containing eight surgically resected human brain arteriovenous malformations and 10 control surgical epilepsy samples. The tissue microarrays were evaluated for Notch 1–4 expression. We have found that compared to normal brain vascular tissue Notch‐3 was dramatically increased in brain arteriovenous malformations. Similarly, Notch 4 labelling was also increased in vascular malformations and was confirmed by western blot analysis. Notch 2 was not detectable in any of the human vessels analysed. Using both immunohistochemistry on microarrays and western blot analysis, we have found that Notch‐1 expression was detectable in control vessels, and discovered a significant decrease of Notch 1 expression in vascular malformations. We have demonstrated that Notch 3 and 4, and not Notch 1, were highly increased in human arteriovenous malformations. Our findings suggested that Notch 4, and more importantly, Notch 3, may play a role in the development and pathobiology of human arteriovenous malformations.  相似文献   

2.
3.
4.
CCM3, a product of the cerebral cavernous malformation 3 or programmed cell death 10 gene (CCM3/PDCD10), is broadly expressed throughout development in both vertebrates and invertebrates. Increasing evidence indicates a crucial role of CCM3 in vascular development and in regulation of angiogenesis and apoptosis. Furthermore, loss of CCM3 causes inherited (familial) cerebral cavernous malformation (CCM), a common brain vascular anomaly involving aberrant angiogenesis. This study focused on signalling pathways underlying the angiogenic functions of CCM3. Silencing CCM3 by siRNA stimulated endothelial proliferation, migration and sprouting accompanied by significant downregulation of the core components of Notch signalling including DLL4, Notch4, HEY2 and HES1 and by activation of VEGF and Erk pathways. Treatment with recombinant DLL4 (rhDLL4) restored DLL4 expression and reversed CCM3‐silence‐mediated impairment of Notch signalling and reduced the ratio of VEGF‐R2 to VEGF‐R1 expression. Importantly, restoration of DLL4‐Notch signalling entirely rescued the hyper‐angiogenic phenotype induced by CCM3 silence. A concomitant loss of CCM3 and the core components of DLL4‐Notch signalling were also demonstrated in CCM3‐deficient endothelial cells derived from human CCM lesions (CCMEC) and in a CCM3 germline mutation carrier. This study defined DLL4 as a key downstream target of CCM3 in endothelial cells. CCM3/DLL4‐Notch pathway serves as an important signalling for endothelial angiogenesis and is potentially implicated in the pathomechanism of human CCMs.  相似文献   

5.
6.
Notch and its ligands play critical roles in cell fate determination. Expression of Notch and ligand in vascular endothelium and defects in vascular phenotypes of targeted mutants in the Notch pathway have suggested a critical role for Notch signaling in vasculogenesis and angiogenesis. However, the angiogenic signaling that controls Notch and ligand gene expression is unknown. We show here that vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor can induce gene expression of Notch1 and its ligand, Delta-like 4 (Dll4), in human arterial endothelial cells. The VEGF-induced specific signaling is mediated through VEGF receptors 1 and 2 and is transmitted via the phosphatidylinositol 3-kinase/Akt pathway but is independent of mitogen-activated protein kinase and Src tyrosine kinase. Constitutive activation of Notch signaling stabilizes network formation of endothelial cells on Matrigel and enhances formation of vessel-like structures in a three-dimensional angiogenesis model, whereas blocking Notch signaling can partially inhibit network formation. This study provides the first evidence for regulation of Notch/Delta gene expression by an angiogenic growth factor and insight into the critical role of Notch signaling in arteriogenesis and angiogenesis.  相似文献   

7.
8.
Notch4 is a member of the Notch family of transmembrane receptors that is expressed primarily on endothelial cells. Activation of Notch in various cell systems has been shown to regulate cell fate decisions. The sprouting of endothelial cells from microvessels, or angiogenesis, involves the modulation of the endothelial cell phenotype. Based on the function of other Notch family members and the expression pattern of Notch4, we postulated that Notch4 activation would modulate angiogenesis. Using an in vitro endothelial-sprouting assay, we show that expression of constitutively active Notch4 in human dermal microvascular endothelial cells (HMEC-1) inhibits endothelial sprouting. We also show that activated Notch4 inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis in the chick chorioallantoic membrane in vivo. Activated Notch4 does not inhibit HMEC-1 proliferation or migration through fibrinogen. However, migration through collagen is inhibited. Our data show that Notch4 cells exhibit increased beta1-integrin-mediated adhesion to collagen. HMEC-1 expressing activated Notch4 do not have increased surface expression of beta 1-integrins. Rather, we demonstrate that Notch4-expressing cells display beta1-integrin in an active, high-affinity conformation. Furthermore, using function-activating beta 1-integrin antibodies, we demonstrate that activation of beta1-integrins is sufficient to inhibit VEGF-induced endothelial sprouting in vitro and angiogenesis in vivo. Our findings suggest that constitutive Notch4 activation in endothelial cells inhibits angiogenesis in part by promoting beta 1-integrin-mediated adhesion to the underlying matrix.  相似文献   

9.
Neurogenesis diminishes with aging and ischemia‐induced neurogenesis also occurs, but reduced in aged brain. Currently, the cellular and molecular pathways mediating these effects remain largely unknown. Our previous study has shown that Notch1 signaling regulates neurogenesis in subventricular zone (SVZ) of young adult brain after focal ischemia, but whether a similar effect occurs in aged normal and ischemic animals is unknown. Here, we used normal and ischemic aged rat brains to investigate whether Notch1 signaling was involved in the reduction of neurogenesis in response to aging and modulates neurogenesis in aged brains after focal ischemia. By Western blot, we found that Notch1 and Jagged1 expression in the SVZ of aged brain was significantly reduced compared with young adult brain. Consistently, the activated form of Notch1 (Notch intracellular domain; NICD) expression was also declined. Immunohistochemistry confirmed that expression and activation of Notch1 signaling in the SVZ of aged brain were reduced. Double or triple immunostaining showed that that Notch1 was mainly expressed in doublecortin (DCX)‐positive cells, whereas Jagged1 was predominantly expressed in astroglial cells in the SVZ of normal aged rat brain. In addition, disruption or activation of Notch1 signaling altered the number of proliferating cells labeled by bromodeoxyuridine (BrdU) and DCX in the SVZ of aged brain. Moreover, ischemia‐induced cell proliferation in the SVZ of aged brain was enhanced by activating the Notch1 pathway and was suppressed by inhibiting the Notch1 signaling. Reduced infarct volume and improved motor deficits were also observed in Notch1 activator–treated aged ischemic rats. Our data suggest that Notch1 signaling modulates the SVZ neurogenesis in aged brain in normal and ischemic conditions.  相似文献   

10.
Periodic Delta-like 4 expression in developing retinal arteries   总被引:6,自引:0,他引:6  
During vascular development, Notch signalling plays important roles in cell-cell communication and cell fate decisions. We studied expression of Notch 1-4 and its ligand Delta-like 4 (Dll4) in the developing retinal vasculature. Dll4 mRNA is strongly expressed in endothelial cells at the very tips of growing vessels ('tip cells') and also in arteries, where it is expressed in a segmented 'tiger's tail' pattern. This implies that developing retinal arteries contain different types of endothelial cells, Dll4-positive and Dll4-negative. The Dll4-positive stripes do not correspond to any obvious morphological property of the vascular network but correlate to some extent with the distribution of platelet derived growth factor B (PDGF-B) mRNA. However, PDGF-B expression is neither as artery-specific nor as clearly segmented as Dll4. Possible target cells for Dll4 signalling are retinal astrocytes (Notch1 positive), arterial pericytes (Notch3 positive) or arterial endothelial cells themselves (Notch4 positive). However, there is no clear reciprocity of Notch and Dll4 expression that allows identification of the interacting cells. Nevertheless, Dll4 stripes are a novel property of immature arteries, the origin and function of which remain to be explained.  相似文献   

11.
12.
The precise mechanisms of SDF‐1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF‐1 and CXCR4. In the current study, we demonstrated SDF‐1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF‐1 expression in wild‐type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF‐1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF‐1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF‐1 application and two times less after blocking this pathway. Bone marrow‐derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF‐1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF‐1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.  相似文献   

13.
Within the vascular endothelial growth factor (VEGF) family of five subtypes, VEGF165 secreted by endothelial cells has been identified to be the most active and widely distributed factor that plays a vital role in courses of angiogenesis, vascularization and mesenchymal cell differentiation. Hair follicle stem cells (HFSCs) can be harvested from the bulge region of the outer root sheath of the hair follicle and are adult stem cells that have multi‐directional differentiation potential. Although the research on differentiation of stem cells (such as fat stem cells and bone marrow mesenchymal stem cells) to the endothelial cells has been extensive, but the various mechanisms and functional forms are unclear. In particular, study on HFSCs’ directional differentiation into vascular endothelial cells using VEGF165 has not been reported. In this study, VEGF165 was used as induction factor to induce the differentiation from HFSCs into vascular endothelial cells, and the results showed that Notch signalling pathway might affect the differentiation efficiency of vascular endothelial cells. In addition, the in vivo transplantation experiment provided that HFSCs could promote angiogenesis, and the main function is to accelerate host‐derived neovascularization. Therefore, HFSCs could be considered as an ideal cell source for vascular tissue engineering and cell transplantation in the treatment of ischaemic diseases.  相似文献   

14.
Notch signaling is essential for embryonic vascular development in mammals and other vertebrates. Here we show that mouse embryos with conditional activation of the Notch1 gene in endothelial cells (Notch1 gain of function embryos) exhibit defects in vascular remodeling increased diameter of the dorsal aortae, and form arteriovenous malformations. Conversely, embryos with either constitutive or endothelial cell‐specific Notch1 gene deletion also have vascular defects, but exhibit decreased diameter of the dorsal aortae and form arteriovenous malformations distinctly different from the Notch1 gain of function mutants. Surprisingly, embryos homozygous for mutations of the ephrinB/EphB pathway genes Efnb2 and Ephb4 exhibit vascular defects and arteriovenous malformations that phenocopy the Notch1 gain of function mutants. These results suggest that formation of arteriovenous malformations in Notch1 gain of function mutants and ephrinB/EphB pathway loss of function mutant embryos occurs by different mechanisms. genesis 48:146–150, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Organ toxicity, including kidney injury, limits the use of cisplatin for the treatment of multiple human cancers. Hence, interventions to alleviate cisplatin‐induced nephropathy are of benefit to cancer patients. Recent studies have demonstrated that pharmacological inhibition of the Notch signaling pathway enhances cisplatin efficacy against several cancer cells. However, whether augmentation of the anti‐cancer effect of cisplatin by Notch inhibition comes at the cost of increased kidney injury is unclear. We show here that treatment of mice with cisplatin resulted in a significant increase in Notch ligand Delta‐like 1 (Dll1) and Notch1 intracellular domain (N1ICD) protein expression levels in the kidneys. N‐[N‐(3,5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine t‐butyl ester (DAPT), a γ‐secretase inhibitor reversed cisplatin‐induced increase in renal N1ICD expression and plasma or urinary levels of predictive biomarkers of acute kidney injury (AKI). DAPT also mitigated cisplatin‐induced tubular injury and reduction in glomerular filtration rate. Real‐time multiphoton microscopy revealed marked necrosis and peritubular vascular dysfunction in the kidneys of cisplatin‐treated mice which were abrogated by DAPT. Cisplatin‐induced Dll1/Notch1 signaling was recapitulated in a human proximal tubule epithelial cell line (HK‐2). siRNA‐mediated Dll1 knockdown and DAPT attenuated cisplatin‐induced Notch1 cleavage and cytotoxicity in HK‐2 cells. These data suggest that Dll1‐mediated Notch1 signaling contributes to cisplatin‐induced AKI. Hence, the Notch signaling pathway could be a potential therapeutic target to alleviate renal complications associated with cisplatin chemotherapy.  相似文献   

16.
17.
18.
19.
The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signaling-deficient mice have so far not been examined in detail in the head region. The bHLH genes Hes1 and Hes5 are essential effectors for Notch signaling, which regulate the maintenance of progenitor cells and the timing of their differentiation in various tissues and organs. Here, we report that endothelial-specific Hes1 and Hes5 mutant embryos exhibited defective vascular remodeling in the brain. In addition, arterial identity of endothelial cells was partially lost in the brain of these mutant mice. These data suggest that Hes1 and Hes5 regulate vascular remodeling and arterial fate specification of endothelial cells in the development of the brain. Hes1 and Hes5 represent critical transducers of Notch signals in brain vascular development.  相似文献   

20.
Notch proteins are a transmembrane receptor family that is structurally and functionally conserved from worms to humans. The mammalian family of Notch proteins consists of several genes encoding Notch receptors and related Notch ligands. Notch signaling is involved in different aspects of the cell-fate decision tree: differentiation, proliferation, and apoptosis. These three processes are finely regulated in human placenta in order to allow a successful pregnancy and correct fetal growth. Notch and its ligands also participate in vascular remodeling and stabilization. Vasculogenesis and blood regulation are of importance in the human placenta for normal fetal development and growth; any disorder of these systems leads to preeclampsia. Drawing on this background, we have investigated the expression of Notch-1, Notch-4, and Jagged-1, together with two members related to the Notch pathway in angiogenesis: VEGF and p21. Normal and preeclamptic human placentas have been evaluated by immunohistochemistry. In preeclamptic samples, a down-regulation of Notch pathway members occurs with a weak/moderate expression of the Notch protein members in all components of placenta compared with physiological placentas that, at term, exhibit the strong expression of Jagged-1 and a moderate expression of both Notch-1 and Notch-4 in all compartments of the placental villi. Moreover, preeclamptic samples also reveal a down-regulation of VEGF expression, together with a moderate nuclear expression of p21Cip1 in the syncytiotrophoblast, cytotrophoblast, and endothelial cells. This down-regulation of VEGF in preeclamptic placentas, in turn, probably decreases Notch protein expression in placental compartments and in endothelial cells and could offer an ethiopathogenetic explanation for the onset of this pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号