首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extended leaf phenology (early budbreak and/or delayed leaf drop) and allelopathy are potentially key invasion mechanisms in North American deciduous forests. Because extended phenology confers increased access to light energy and allelochemical production is energetically costly, these traits may interact synergistically to determine invader impact. Garlic mustard (Alliaria petiolata) exhibits both traits, and may also exploit high light in open habitats. We manipulated seasonal light availability to examine effects of light on garlic mustard’s growth, allelochemical production, and impact on native species. Invaded and not-invaded woodland microcosms were exposed to three light treatments: shading year-round (‘extended shade’), shading when the local tree canopy was closed (‘natural shade’), and ambient light year-round (‘no-shade’). Regardless of native presence, garlic mustard biomass was highest under natural shade and, due to apparent irradiation damage, lowest under no-shade. Similarly, growth and fruit production of garlic mustard monocultures were reduced in unshaded conditions. Consistent with these results, garlic mustard reduced the growth of native woodland forbs Blephilia hirsuta and Ageratina altissima most under natural shade, suggesting that extended leaf phenology mediates impact on these herbaceous species. However, garlic mustard growth did not predict reduction of whole-community biomass: invasion reduced native community growth most under no-shade, where invader biomass was lowest but allelochemical production was highest. This result may be driven by a ‘post-mortem’ pulse of allelochemicals from decaying garlic mustard tissue. We conclude that extended leaf phenology may mediate garlic mustard’s impact on some native species, and that light and allelopathy may interact to drive invasion.  相似文献   

2.
Lauren M. Smith  Spencer Hall 《Oikos》2016,125(6):839-848
Invasive plants can inflict great harm, yet drivers of successful invasion remain unclear. Many invaders of North American deciduous forests exhibit extended leaf phenology (ELP), or longer growing season relative to natives. ELP may grant invaders competitive advantages, but we argue that ELP more potently drives invasion in the presence of herbivores. ELP invaders can support herbivores by lessening starvation during winter; consequently, native plants may suffer when attacked later through apparent competition. As modeled here, even short ELP can promote competitive success of invaders, and apparent competition sharply enhances ELP invader dominance. In ‘partial enemy escape’ scenarios, a less palatable ELP invader nearly excludes a preferred native where an invader without ELP could not. Together, ELP and apparent competition enhance invasion even when biotic resistance should suppress it, i.e. when the invader competes weakly or provides preferred forage. Thus, ELP‐apparent competition interactions grant invaders considerable success while challenging core tenets of invasion ecology.  相似文献   

3.
Refuge‐mediated apparent competition was recently suggested as a mechanism that enables plant invasions. The refuge characteristics of introduced plants are predicted to enhance impacts of generalist herbivores on native competitors and thereby result in an increased abundance of the invader. However, this prediction has so far not been experimentally verified. This study tested if the invasion of a chemically defended seaweed is promoted by native generalist herbivores via refuge‐mediated apparent competition. The invader was shown to offer herbivores a significantly better refuge against fish predation compared with native seaweeds. Furthermore, in an experimental community, the presence of herbivores decreased the performance of neighbouring native seaweeds, but increased growth and relative abundance of the invader. These results provides the first experimental evidence that native generalist herbivores can shift a community towards a dominance of a well‐defended invader, inferior to native species in direct competitive interactions, by means of refuge‐mediated apparent competition.  相似文献   

4.
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are predicted to resist invasion when they contain native species that are functionally similar to potential invaders; where phenology may be a key functional trait. Nutrient reduction is another common strategy for reducing invasion following native species restoration, because soil nitrogen (N) enrichment often facilitates invasion. Here, we focus on restoring the herbaceous community associated with coastal sage scrub vegetation in Southern California; these communities are often highly invaded, especially by exotic annual grasses that are notoriously challenging for restoration. We created experimental plant communities composed of the same 20 native species, but manipulated functional group abundance (according to growth form, phenology, and N‐fixation capacity) and soil N availability. We fertilized to increase N, and added carbon to reduce N via microbial N immobilization. We found that N reduction decreased exotic cover, and the most successful seed mix for reducing exotic abundance varied depending on the invader functional type. For instance, exotic annual grasses were least abundant when the native community was dominated by early active forbs, which matched the phenology of the exotic annual grasses. Our findings show that nutrient availability and the timing of biotic interactions are key filters that can be manipulated in restoration to prevent invasion and maximize native species recovery.  相似文献   

5.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

6.
Alien plant species are known to have a wide range of impacts on recipient communities, from resident species’ exclusions to coexistence with resident species. It remains unclear; however, if this variety of impacts is due to different invader strategies, features of recipient communities or both. To test this, we examined multiple plant invasions of a single ecosystem in southwestern Australia. We used extensive community data to calculate pairwise segregation between target alien species and many co‐occurring species. We related segregation to species’ positions along community trait hierarchies and identified at least two distinct invasion strategies: ‘exploiters’ which occupy high positions along key trait hierarchies and reduce local native species diversity (particularly in nutrient‐enriched situations), and ‘coexisters’ who occupy intermediate trait positions and have no discernable impact on native diversity. We conclude that trait hierarchies, linked to measures of competition, can provide valuable insights about the processes driving different invasion outcomes.  相似文献   

7.
Climate similarity favors biological invasion, but a match between seasonality in the novel range and the timing of life cycle events of the invader also influences the outcome of species introduction. Yet, phenology effects on invasion success have generally been neglected. Here we study whether a phenological mismatch limits the non-native range of a globally successful invader, the Ring-necked parakeet, in Europe. Given the latitudes at which parakeets have established across Europe, they breed earlier than expected based on breeding dates from the native Asian range. Moreover, comparing the breeding dates of European populations to those of parakeets in the native Asian range, to five native breeding bird species in Europe and to the start of the growing season of four native European trees shows that the discrepancy between expected and actual breeding phenology is greater in northern Europe. In northern European populations, this temporal mismatch appears to have negative effects on hatching success, and on population growth rates in years that are colder than average in the first six months. Phenological mismatch also can explain why parakeets from African populations (that are more likely to breed in autumn) have been poor invaders compared to parakeets from Asia. These lines of evidence support the hypothesis that the reproductive phenology of the Ring-necked parakeet can be a limiting factor for establishment and range expansion in colder climates. Our results provide growing support for the hypothesis that the match between climate seasonality and timing of reproduction (or other important life cycle events) can affect the establishment success, invasive potential and distribution range of introduced non-native species, beyond the mere effect of climate similarity.  相似文献   

8.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

9.
Invasive species can change selective pressures on native plants by altering biotic and abiotic conditions in invaded habitats. Although invasions can lead to native species extirpation, they may also induce rapid evolutionary changes in remnant native plants. We investigated whether adult plants of five native perennial grasses exhibited trait shifts consistent with evolution in response to invasion by the introduced annual grass Bromus tectorum L. (cheatgrass), and asked how much variation there was among species and populations in the ability to grow successfully with the invader. Three hundred and twenty adult plants were collected from invaded and uninvaded communities from four locations near Reno, Nevada, USA. Each plant was divided in two and transplanted into the greenhouse. One clone was grown with B. tectorum while the other was grown alone, and we measured tolerance (ability to maintain size) and the ability to reduce size of B. tectorum for each plant. Plants from invaded populations consistently had earlier phenology than those from uninvaded populations, and in two out of four sites, invaded populations were more tolerant of B. tectorum competition than uninvaded populations. Poa secunda and one population of E. multisetus had the strongest suppressive effect on B. tectorum, and these two species were the only ones that flowered in competition with B. tectorum. Our study indicates that response to B. tectorum is a function of both location and species identity, with some, but not all, populations of native grasses showing trait shifts consistent with evolution in response to B. tectorum invasion within the Great Basin.  相似文献   

10.
Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species’ success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion.  相似文献   

11.
To explore the traits contributing to invasion success of Eupatorium adenophorum, a noxious invasive perennial forb throughout the subtropics in Asia, Oceania, Africa, and USA, we compared the differences in ecophysiology and phenology between the invader and native E. japonicum under eight treatment combinations of two irradiances and four nitrogen additions in a two-year shadehouse experiment. The invader had significantly higher mass-based light-saturated photosynthetic rate (P max) than its native congener in all treatments, contributing to higher photosynthetic nitrogen-, phosphorus-, and energy-use efficiencies. The higher P max of the invader was associated with its higher nitrogen concentrations in the photosynthetic apparatus, which resulted from higher leaf nitrogen allocation to photosynthesis. The invader had higher specific leaf area and stomatal conductance at most of the treatments, also contributing to its higher P max. The invader was not constrained by the negative correlation between leaf lifespan and specific leaf area or P max. Leaf lifespan and total leaf area of the invader were greater than those of the native. From November to March the native congener was leafless, whereas the invader maintained a large area of leaves with relatively high P max. Biomass accumulated in these months accounted for more than 40 % of the total biomass of the invader. Our results indicate that both the ability to capture and utilize resources efficiently and the ability to use resources when they are unavailable to natives contribute to invasion success of E. adenophorum and emphasize the importance of exploring multiple, non-mutually exclusive mechanisms for invasions.  相似文献   

12.
Alien invasive plants threaten biodiversity, productivity and ecosystem functioning throughout the world. We examined the effect of Fallopia japonica on two native grassland species (Trifolium repens, Lolium perenne). We hypothesized that its negative effects on the native species are dependent on three mechanisms: (i) allelochemicals released and accumulated in soil with a history of invasion, (ii) altered soil biota and (iii) direct resource competition. We measured the response of the native species as the difference in their functional traits when grown under the three conditions. Our results demonstrate that neither allelochemicals nor soil biota from soil with history of F. japonica invasion had measurable effects on either species. Competition with the invader strongly reduced height, biomass and specific leaf area (SLA) of T. repens, while it had a lower effect on L. perenne. Furthermore, our results reveal that F. japonica took advantage of a positive plant–soil and plant–plant interaction. The results show that the prominent mechanism underpinning the invasion success of F. japonica in the grassland was the direct resource competition. This prominent role is also confirmed by the significant interactions between competition, allelochemicals and soil biota from soils with history of invasion of F. japonica on SLA of the native species.  相似文献   

13.
Invasive exotic plants reduce the diversity of native communities by displacing native species. According to the coexistence theory, native plants are able to coexist with invaders only when their fitness is not significantly smaller than that of the exotics or when they occupy a different niche. It has therefore been hypothesized that the survival of some native species at invaded sites is due to post‐invasion evolutionary changes in fitness and/or niche traits. In common garden experiments, we tested whether plants from invaded sites of two native species, Impatiens noli‐tangere and Galeopsis speciosa, outperform conspecifics from non‐invaded sites when grown in competition with the invader (Impatiens parviflora). We further examined whether the expected superior performance of the plants from the invaded sites is due to changes in the plant size (fitness proxy) and/or changes in the germination phenology and phenotypic plasticity (niche proxies). Invasion history did not influence the performance of any native species when grown with the exotic competitor. In I. noli‐tangere, however, we found significant trait divergence with regard to plant size, germination phenology and phenotypic plasticity. In the absence of a competitor, plants of I. noli‐tangere from invaded sites were larger than plants from non‐invaded sites. The former plants germinated earlier than inexperienced conspecifics or an exotic congener. Invasion experience was also associated with increased phenotypic plasticity and an improved shade‐avoidance syndrome. Although these changes indicate fitness and niche differentiation of I. noli‐tangere at invaded sites, future research should examine more closely the adaptive value of these changes and their genetic basis.  相似文献   

14.
Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity–stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity–stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non‐native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi‐natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning.  相似文献   

15.
Smith (2013), in this issue, reviews the consequences of extended leaf phenology of invasive plant species in native deciduous forests. How important is early leaf emergence and/or late leaf senescence for the success of non‐native species? What are the direct and indirect impacts on invaded communities and ecosystems? We are just at the very early stage in answering such questions.  相似文献   

16.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

17.
Not all non‐native species have strong negative impacts on native species. It is desirable to assess whether a non‐native species will have a negative impact at an early stage in the invasion process, when management options such as eradication are still available. Although it may be difficult to detect early impacts of non‐native species, it is necessary to ensure that management decisions can be based on case‐specific scientific evidence. We assess the impacts of a non‐native bird, the Black‐headed Weaver Ploceus melanocephalus, at an early stage in its invasion of the Iberian Peninsula. To do this we identify potential pathways by which competition for shared resources by Black‐headed Weavers could lead to population declines in two ecologically similar native species, and generate hypotheses to test for evidence of competition along these pathways. Black‐headed Weavers could potentially impact native species by displacing them from nesting habitat, or by reducing habitat quality. We found no evidence for either potential competition pathway, suggesting that Black‐headed Weavers do not currently compete with the two native species. However, it is possible that mechanisms that currently allow coexistence may not operate once Black‐headed Weavers reach higher population densities or different habitats.  相似文献   

18.
  • Successful alien plant invasion is influenced by both climate change and plant–plant interactions. We estimate the single and interactive effects of competition and extreme weather events on the performance of the global legume invader Lupinus polyphyllus (Lindl.).
  • In three experimental studies we assessed (i) the stress tolerance of seedling and adult L. polyphyllus plants against extreme weather events (drought, fluctuating precipitation, late frost), (ii) the competitive effects of L. polyphyllus on native grassland species and vice versa, and (iii) the interactive effects of extreme weather events and competition on the performance of L. polyphyllus.
  • Drought reduced growth and led to early senescence of L. polyphyllus but did not reduce adult survival. Fluctuating precipitation events and late frost reduced the length of inflorescences. Under control conditions, interspecific competition reduced photosynthetic activity and growth of L. polyphyllus. When subjected to competition during drought, L. polyphyllus conserved water while simultaneously maintaining high assimilation rates, demonstrating increased water use efficiency. Meanwhile, native species had reduced performance under drought.
  • In summary, the invader gained an advantage under drought conditions through a smaller reduction in performance relative to its native competitors but was competitively inferior under control conditions. This provides evidence for a possible invasion window for this species. While regions of high elevation or latitude with regular severe late frost events might remain inaccessible for L. polyphyllus, further spread across Europe seems probable as the predicted increase in drought events may favour this non‐native legume over native species.
  相似文献   

19.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

20.
Biotic resistance may influence invasion success; however, the relative roles of species richness, functional or phylogenetic distance in predicting invasion success are not fully understood. We used biomass fraction of Chromolaena odorata, an invasive species in tropical and subtropical areas, as a measure of ‘invasion success’ in a series of artificial communities varying in species richness. Communities were constructed using species from Mexico (native range) or China (non‐native range). We found strong evidence of biotic resistance: species richness and community biomass were negatively related with invasion success; invader biomass was greater in plant communities from China than from Mexico. Harvesting time had a greater effect on invasion success in plant communities from China than on those from Mexico. Functional and phylogenetic distances both correlated with invasion success and more functionally distant communities were more easily invaded. The effects of plant‐soil fungi and plant allelochemical interactions on invasion success were species‐specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号