首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We undertook a comprehensive morphological and molecular phylogenetic analysis of dragonfly phylogeny, examining both extant and fossil lineages in simultaneous analyses. The legitimacy of higher‐level family groups and the phylogenetic relationship between families were tested. Thirteen families were supported as monophyletic (Aeshnidae, Calopterygidae, Chlorocyphidae, Euphaeidae, Gomphidae, Isostictidae, Lestidae, Libellulidae, Petaluridae, Platystictidae, Polythoridae, Pseudostigmatidae and Synthemistidae) and eight as non‐monophyletic (Amphipterygidae, Coenagrionidae, Corduliidae, Megapodagrionidae, Protoneuridae and Synlestidae), although Perilestidae and Platycnemididae were recovered as monophyletic under Bayesian analyses. Nine families were represented by one species, thus monophyly was not tested (Epiophlebiidae, Austropetaliidae, Chlorogomphidae, Cordulegastridae, Macromiidae, Chorismagrionidae, Diphlebiidae, Lestoideidae and Pseudolestidae). Epiprocta and Zygoptera were recovered as monophyletic. Ditaxinerua is supported as the sister lineage to Odonata, Epiophlebiidae and the lestid‐like damselflies are sister to the Epiprocta and Zygoptera, respectively. Austropetaliidae + Aeshnidae is the sister lineage to the remaining Anisoptera. Tarsophlebia's placement as sister to Epiprocta or as sister to Epiprocta + Zygoptera was not resolved. Refinements are made to the current classification. Fossil taxa did not seem to provide signals crucial to recovering a robust phylogeny, but were critical to understanding the evolution of key morphological features associated with flight. Characters associated with wing structure were optimized revealing two wing character complexes: the pterostigma–nodal brace complex and the costal wing base & costal–ScP junction complex. In turn, these two complexes appear to be associated; the pterostigma–nodal brace complex allowing for further modification of the wing characters comprised within the costal wing base & costal–ScP junction complex leading the modern odonate wing. © The Willi Hennig Society 2008.  相似文献   

2.
Adipokinetic neuropeptides from the corpora cardiaca of the major families of all three suborders of the Odonata were identified by one or more of the following methods: (1) Isolation of the peptides from a methanolic extract of the corpora cardiaca by liquid chromatography, peak monitoring by fluorescence of the Trp residue and comparison of the retention time with those of known synthetic peptides of Odonata. (2) Hyperlipaemic bioassays of the HPLC-generated fractions either in Locusta migratoria or, in a few cases, in Anax imperator or Orthetrum julia. (3) Sequencing of the isolated, bioactive HPLAC fraction by Edman degradation. (4) Mass spectrometric measurement of the isolated, bioactive fraction. Sequence assignment revealed that the investigated Odonata species always contain only one adipokinetic peptide. This is always an octapeptide. The suborder Zygoptera contains the peptide code-named Psein-AKH, the Anisozygoptera and the families Aeshnidae, Cordulegastridae and Macromiidae of the Anisoptera contain Anaim-AKH, whereas Gomphidae, Corduliidae (with the exception of Syncordulia gracilis) and Libellulidae contain Libau-AKH; one species of Libellulidae has Erysi-AKH, a very conservative modification of Libau-AKH (one point mutation). When these structural data are interpreted in conjunction with existing phylogenies of Odonata, they support the following: (1) Zygoptera are monophyletic and not paraphyletic. (2) Anisozygoptera and Anisoptera are sister groups and contain the ancestral Anaim-AKH which is independently and convergently mutated to Libau-AKH in Gomphidae and Libellulidae. (3) The Corduliidae are of special interest. Only Corduliidae sensu stricto appear to contain Libau-AKH, other species placed into this family by most authorities contain the ancestral Anaim-AKH. Possibly, assignments of AKHs can untangle the paraphyly of this family.  相似文献   

3.
The application of mixed nucleotide/doublet substitution models has recently received attention in RNA‐based phylogenetics. Within a Bayesian approach, it was shown that mixed models outperformed analyses relying on simple nucleotide models. We analysed an mt RNA data set of dragonflies representing all major lineages of Anisoptera plus outgroups, using a mixed model in a Bayesian and parsimony (MP) approach. We used a published mt 16S rRNA secondary consensus structure model and inferred consensus models for the mt 12S rRNA and tRNA valine. Secondary structure information was used to set data partitions for paired and unpaired sites on which doublet or nucleotide models were applied, respectively. Several different doublet models are currently available of which we chose the most appropriate one by a Bayes factor test. The MP reconstructions relied on recoded data for paired sites in order to account for character covariance and an application of the ratchet strategy to find most parsimonious trees. Bayesian and parsimony reconstructions are partly differently resolved, indicating sensitivity of the reconstructions to model specification. Our analyses depict a tree in which the damselfly family Lestidae is sister group to a monophyletic clade Epiophlebia + Anisoptera, contradicting recent morphological and molecular work. In Bayesian analyses, we found a deep split between Libelluloidea and a clade ‘Aeshnoidea’ within Anisoptera largely congruent with Tillyard’s early ideas of anisopteran evolution, which had been based on evidently plesiomorphic character states. However, parsimony analysis did not support a clade ‘Aeshnoidea’, but instead, placed Gomphidae as sister taxon to Libelluloidea. Monophyly of Libelluloidea is only modestly supported, and many inter‐family relationships within Libelluloidea do not receive substantial support in Bayesian and parsimony analyses. We checked whether high Bayesian node support was inflated owing to either: (i) wrong secondary consensus structures; (ii) under‐sampling of the MCMC process, thereby missing other local maxima; or (iii) unrealistic prior assumptions on topologies or branch lengths. We found that different consensus structure models exert strong influence on the reconstruction, which demonstrates the importance of taxon‐specific realistic secondary structure models in RNA phylogenetics.  相似文献   

4.
Anisopteran leg functions change dramatically from the final larval stadium to the adult. Larvae use legs mainly for locomotion, walking, climbing, clinging, or burrowing. Adults use them for foraging and grasping mates, for perching, clinging to the vegetation, and for repelling rivals. In order to estimate the ontogenetic shift in the leg construction from the larva to the adult, this study quantitatively compared lengths of fore, mid, and hind legs and the relationships between three leg segments, femur, tibia, and tarsus, in larval and adult Anisoptera of the families Gomphidae, Aeshnidae, Cordulegastridae, Corduliidae, and Libellulidae, represented by two species each. We found that leg segment length ratio as well as ontogenetic shift in length ratios was different between families, but rather similar within the families. While little ontogenetic shift occurred in Aeshnidae, there were some modifications in Corduliidae and Libellulidae. The severest shift occurred in Gomphidae and Cordulegastridae, both having burrowing larvae. These two families form a cluster, which is in contrast to their taxonomic relationship within the Anisoptera. Cluster analysis implies that the function of larval legs is primarily responsible for grouping, whereas adult behavior or the taxonomic relationships do not explain the grouping. This result supports the previous hypothesis about the convergent functional shift of leg characters in the dragonfly ontogenesis.  相似文献   

5.
In this study, we sequenced both two mitochondrial genes (COI and 16S rRNA) and nuclear genes (28S rRNA and elongation factor‐1α) from 71 species of Odonata that represent 7 superfamilies in 3 suborders. Phylogenetic testing for each two concatenated gene sequences based on function (ribosomal vs protein‐coding genes) and origin (mitochondrial vs nuclear genes) proved limited resolution. Thus, four concatenated sequences were utilized to test the previous phylogenetic hypotheses of higher taxa of Odonata via Bayesian inference (BI) and maximum likelihood (ML) algorithms, along with the data partition by the BI method. As a result, three slightly different topologies were obtained, but the BI tree without partition was slightly better supported by the topological test. This topology supported the suborders Anisoptera and Zygoptera each being a monophyly, and the close relationship of Anisozygoptera to Anisoptera. All the families represented by multiple taxa in both Anisoptera and Zygoptera were consistently revealed to each be a monophyly with the highest nodal support. Unlike consistent and robust familial relationships in Zygoptera those of Anisoptera were partially unresolved, presenting the following relationships: ((((Libellulidae + Corduliidae) + Macromiidae) + Gomphidae + Aeshnidae) + Anisozygoptera) + (((Coenagrionidae + Platycnemdidae) + Calopterygidae) + Lestidae). The subfamily Sympetrinae, represented by three genera in the anisopteran family Libellulidae, was not monophyletic, dividing Crocothemis and Deielia in one group together with other subfamilies and Sympetrum in another independent group.  相似文献   

6.
The relic dragonfly family Epiophlebiidae is recovered as sistergroup of Anisoptera (= Epiprocta) by most molecular and morphological analyses. However, in a recent study it was placed within Anisoptera as sister group of Cordulegastridae. In another study, several affinities to Zygoptera in the morphology of the ovipositor and the egg-laying behaviour were pointed out. Here, we present a detailed study of the outer, as well as the inner, head morphology of Epiophlebia superstes. Compared with the last detailed literature account, three additional mandibular muscles were discovered, as well as additional buccal and pharyngeal muscles. The results are compared with the anatomic features of Zygoptera and Anisoptera. A formal character evaluation focused on head characters confirms the sistergroup relationship of Epiophlebiidae and Anisoptera.  相似文献   

7.
Phylogenetic relationships within Collembola were determined through the cladistic analysis of 131 morphological characters and 67 exemplar taxa representing the major families of the group, with special emphasis on Poduromorpha. The results show that the order Poduromorpha is monophyletic and the sister group to the remaining Collembola, with Entomobryomorpha monophyletic and the sister group to the clade Neelipleona + Symphypleona. In Entomobryomorpha, Actaletidae is the sister group of the remaining families. In Poduromorpha, Tullbergiinae is monophyletic as well as Onychiurinae and the group Tetrodontophorinae + Onychiurinae which is the sister group of the remaining Poduromorpha; Tetrodontophorinae is paraphyletic; Onychiuridae is polyphyletic; Isotogastruridae is not an intermediate between Poduromorpha and Entomobryomorpha, it is the sister group of Tullbergiinae; Odontellidae is monophyletic and the sister group to the clade Neanuridae + Brachystomellidae; in Neanuridae, Frieseinae and the group Pseudachorutinae + Morulinae + Neanurinae are monophyletic; Morulinae is the sister group of Neanurinae; Pseudachorutinae is paraphyletic; Hypogastruridae is polyphyletic; Podura aquatica (Poduridae) is not 'primitive', it clusters with the genera Xenylla and Paraxenylla in Hypogastruridae. On the basis of these relationships and the position of the aquatic species, the most parsimonious hypothesis is a terrestrial edaphic origin for the springtails.  相似文献   

8.
The exclusive use of characters coding for specific life stages may bias tree reconstruction. If characters from several life stages are coded, the type of coding becomes important. Here, we simulate the influence on tree reconstruction of morphological characters of Odonata larvae incorporated into a data matrix based on the adult body under different coding schemes. For testing purposes, our analysis is focused on a well‐supported hypothesis: the relationships of the suborders Zygoptera, ‘Anisozygoptera’, and Anisoptera. We studied the cephalic morphology of Epiophlebia, a key taxon among Odonata, and compared it with representatives of Zygoptera and Anisoptera in order to complement the data matrix. Odonate larvae are characterized by a peculiar morphology, such as the specific head form, mouthpart configuration, ridge configuration, cephalic musculature, and leg and gill morphology. Four coding strategies were used to incorporate the larval data: artificial coding (AC), treating larvae as independent terminal taxa; non‐multistate coding (NMC), preferring the adult life stage; multistate coding (MC); and coding larval and adult characters separately (SC) within the same taxon. As expected, larvae are ‘monophyletic’ in the AC strategy, but with anisopteran and zygopteran larvae as sister groups. Excluding larvae in the NMC approach leads to strong support for both monophyletic Odonata and Epiprocta, whereas MC erodes phylogenetic signal completely. This is an obvious result of the larval morphology leading to many multistate characters. SC results in the strongest support for Odonata, and Epiprocta receives the same support as with NMC. Our results show the deleterious effects of larval morphology on tree reconstruction when multistate coding is applied. Coding larval characters separately is still the best approach in a phylogenetic framework. © 2015 The Linnean Society of London  相似文献   

9.
The first comprehensive analysis of higher‐level phylogeny of the order Hymenoptera is presented. The analysis includes representatives of all extant superfamilies, scored for 392 morphological characters, and sequence data for four loci (18S, 28S, COI and EF‐1α). Including three outgroup taxa, 111 terminals were analyzed. Relationships within symphytans (sawflies) and Apocrita are mostly resolved. Well supported relationships include: Xyeloidea is monophyletic, Cephoidea is the sister group of Siricoidea + [Xiphydrioidea + (Orussoidea + Apocrita)]; Anaxyelidae is included in the Siricoidea, and together they are the sister group of Xiphydrioidea + (Orussoidea + Apocrita); Orussoidea is the sister group of Apocrita, Apocrita is monophyletic; Evanioidea is monophyletic; Aculeata is the sister group of Evanioidea; Proctotrupomorpha is monophyletic; Ichneumonoidea is the sister group of Proctotrupomorpha; Platygastroidea is sister group to Cynipoidea, and together they are sister group to the remaining Proctotrupomorpha; Proctotrupoidea s. str. is monophyletic; Mymarommatoidea is the sister group of Chalcidoidea; Mymarommatoidea + Chalcidoidea + Diaprioidea is monophyletic. Weakly supported relationships include: Stephanoidea is the sister group of the remaining Apocrita; Diaprioidea is monophyletic; Ceraphronoidea is the sister group of Megalyroidea, which together form the sister group of [Trigonaloidea (Aculeata + Evanioidea)]. Aside from paraphyly of Vespoidea within Aculeata, all currently recognized superfamilies are supported as monophyletic. The diapriid subfamily Ismarinae is raised to family status, Ismaridae stat. nov. © The Will Henning Society 2011.  相似文献   

10.
Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions (COI, EF-1alpha and wingless). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1alpha data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.  相似文献   

11.
Due to their unique flight mechanism including a direct flight musculature, Odonata show impressive flight skills. Several publications addressed the details of this flight apparatus like: sclerites, wings, musculature, and flight aerodynamics. However, 3D-analysis of the thorax musculature of adult dragonflies was not studied before and this paper allows for a detailed insight. We, therefore, focused on the thorax musculature of adult Anisoptera using micro-computed tomography. Herewith, we present a comparative morphological approach to identify differences within Anisoptera: Aeshnidae, Corduliidae, Gomphidae, and Libellulidae. In total, 54 muscles were identified: 16 prothoracic, 19 mesothoracic, and 19 metathoracic. Recorded differences were for example, the reduction of muscle Idlm4 and an additional muscle IIIdlm1 in Aeshna cyanea, previously described as rudimentary or missing. Muscle Iscm1, which was previously reported missing in all Odonata, was found in all investigated species. The attachment of muscle IIpcm2 in Pantala flavescens is interpreted as a probable adaption to its long-distance migration behaviour. Furthermore, we present a review of functions of the odonatan flight muscles, considering previous publications. The data herein set a basis for functional and biomechanical studies of the flight apparatus and will therefore lay the foundation for a better understanding of the odonatan flight.  相似文献   

12.
The phylogeny of the families of Culicomorpha and their closest relatives are cladistically reinvestigated adding published information from several sources. A revised data matrix is presented and some characters are discussed. Different outgroups and options used, characters unordered or ordered, the results reweighted or not and the results discussed. Nymphomyiidae in all cladograms, alone or together with Thaumaleidae, forms the sister group of the traditional Culicomorpha and should be included in this infraorder as suggested by others. Superfamily Chironomoidea is not monophyletic as Thaumaleidae or Nymphomyiidae + Thaumaleidae form the sister group to the remaining traditional Culicomorpha. The mutual relationships of Chironomidae, Simuliidae and Ceratopogonidae are variable between cladograms. They form a monophyletic group with Chironomidae and Simuliidae as sister groups when characters are unordered and reweighted or when some characters are ordered, others unordered and the result reweighted. When the characters are ordered, or when a combination of ordered and unordered are used they form a Hennigian comb with the phyletic sequence Chironomidae/Ceratopogonidae/Simuliidae. When characters are ordered and reweighted the phyletic sequence is Chironomidae/Simuliidae/Ceratopogonidae. Culicoidea is monophyletic in all cladograms, but the division into superfamilies is not warranted.  相似文献   

13.
Phylogenetic analysis of higher-level relationships of Odonata   总被引:3,自引:1,他引:2  
Abstract. This is the most comprehensive analysis of higher‐level relationships in Odonata conducted thus far. The analysis was based on a detailed study of the skeletal morphology and wing venation of adults, complemented with a few larval characters, resulting in 122 phylogenetically informative characters. Eighty‐five genera from forty‐five currently recognized families and subfamilies were examined. In most cases, several species were chosen to serve as exemplars for a given genus. The seven fossil outgroup taxa included were exemplar genera from five successively more distant odonatoid orders and suborders: Tarsophlebiidae (the closest sister group of Odonata, previously placed as a family within ‘Anisozygoptera’), Archizygoptera, Protanisoptera, Protodonata and Geroptera. Parsimony analysis of the data, in which characters were treated both under equal weights and implied weighting, produced cladograms that were highly congruent, and in spite of considerable homoplasy in the odonate data, many groupings in the most parsimonious cladograms were well supported in all analyses, as indicated by Bremer support. The analyses supported the monophyly of both Anisoptera and Zygoptera, contrary to the well known hypothesis of zygopteran paraphyly. Within Zygoptera, two large sister clades were indicated, one comprised of the classical (Selysian) Calopterygoidea, except that Amphipterygidae, which have traditionally been placed as a calopterygoid family, nested within the other large zygopteran clade comprised of Fraser's ‘Lestinoidea’ plus ‘Coenagrionoidea’ (both of which were shown to be paraphyletic as currently defined). Philoganga alone appeared as the sister group to the rest of the Zygoptera in unweighted cladograms, whereas Philoganga + Diphlebia comprised the sister group to the remaining Zygoptera in all weighted cladograms. ‘Anisozygoptera’ was confirmed as a paraphyletic assemblage that forms a ‘grade’ towards the true Anisoptera, with Epiophlebia as the most basal taxon. Within Anisoptera, Petaluridae appeared as the sister group to other dragonflies.  相似文献   

14.
The phylogenetic relationships of branchiopod crustaceans have been in the focus of a number of recent morphological and molecular systematic studies. Although agreeing in some respects, major differences remain. We analyzed molecular sequences and morphological characters for 43 branchiopods and two outgroups. The branchiopod terminals comprise all eight “orders”. The molecular data include six loci: two nuclear ribosomal genes (18S rRNA, 28S rRNA), two mitochondrial ribosomal genes (12S rRNA, 16S rRNA), one nuclear protein coding gene (elongation factor 1α), and one mitochondrial protein coding gene (cytochrome c oxidase subunit I). A total of 65 morphological characters were analyzed dealing with different aspects of branchiopod morphology, including internal anatomy and larval characters. The morphological analysis resulted in a monophyletic Phyllopoda, with Notostraca as the sister group to the remaining taxa supporting the Diplostraca concept (“Conchostraca” + Cladocera). “Conchostraca” is not supported but Cyclestheria hislopi is the sister group to Cladocera (constituting together Cladoceromorpha) and Spinicaudata is closer to Cladoceromorpha than to Laevicaudata. Cladocera is supported as monophyletic. The combined analysis under equal weighting gave results in some respects similar to the morphological analysis. Within Phyllopoda, Cladocera, Cladoceromorpha and Spinicaudata + Cladoceromorpha are monophyletic. The combined analysis is different from the morphological analysis with respect to the position of Notostraca and Laevicaudata. Here, Laevicaudata is the sister group to the remaining Phyllopoda and Notostraca is sister group to Spinicaudata and Cladoceromorpha. A sensitivity analysis using 20 different parameter sets (different insertion–deletion [indel]/substitution and transversion/transition ratios) show the monophyly of Anostraca, Notostraca, Laevicaudata, Spinicaudata, Cladoceromorpha, Cladocera, and within Cladocera, of Onychopoda and Gymnomera under all or almost all (i.e., 19 of 20) parameter sets. Analyses with an indel‐to‐transversion ratio up to 2 result in monophyletic Phyllopoda, with Laevicaudata as sister group to the remaining Phyllopoda and with Spinicaudata and Cladoceromorpha as sister groups. Almost all analyses (including those with higher indel weights) result in the same topology when only ingroup taxa are considered. © The Willi Hennig Society 2007.  相似文献   

15.
Abstract. We estimated the phylogeny of the order Odonata, based on sequences of the nuclear ribosomal genes 5.8 S, 18S, and ITS1 and 2. An 18S‐only analysis resolved deep relationships well: the order Odonata, as well as suborders Zygoptera and Epiprocta (Anisoptera + Epiophlebia), emerged as monophyletic. Some other deep clades resolved well, but support for more recently diverged clades was generally weak. A second, simultaneous, analysis of the 5.8S and 18S genes with the intergenic spacers ITS1 and 2 resolved some recent branches better, but appeared less reliable for deep clades with, for example, suborder Anisoptera emerging as paraphyletic and Epiophlebia superstes recovered as an Anisopteran, embedded within aeshnoid‐like anisopterans and sister to the cordulegastrids. Most existing family levels in the Anisoptera were confirmed as monophyletic clades in both analyses. However, within the corduliids that form a major monophyletic clade with the Libellulidae, several subclades were recovered, of which at least Macromiidae and Oxygastridae are accepted at the family level. In the Zygoptera, the situation is complex. The lestid‐like family groups (here called Lestomorpha) emerged as sister taxon to all other zygopterans, with Hemiphlebia sister to all other lestomorphs. Platystictidae formed a second monophylum, subordinated to lestomorphs. At the next level, some traditional clades were confirmed, but the tropical families Megapodagrionidae and Amphipterygidae were recovered as strongly polyphyletic, and tended to nest within the clade Caloptera, rendering it polyphyletic. Platycnemididae were also non‐monophyletic, with several representatives of uncertain placement. Coenagrionids were diphyletic. True Platycnemididae and non‐American Protoneurids are closely related, but their relationship to the other zygopterans remains obscure and needs more study. New World protoneurids appeared relatively unrelated to old world + Australian protoneurids. Several recent taxonomic changes at the genus level, based on morphology, were confirmed, but other morphology‐based taxonomies have misclassified taxa considered currently as Megapodagrionidae, Platycnemididae and Amphipterygidae and have underestimated the number of family‐level clades.  相似文献   

16.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

17.
This study represents the first formal morphological and combined (morphological and molecular) phylogenetic analyses of the order Ephemeroptera. Taxonomic sampling comprised 112 species in 107 genera, including 42 recognized families (all major lineages of Ephemeroptera). Morphological data consisted of 101 morphological characters. Molecular data were acquired from DNA sequences of the 12S, 16S, 18S, 28S and H3 genes. The Asian genus Siphluriscus (Siphluriscidae) was supported as sister to all other mayflies. The lineages Carapacea, Furcatergalia, Fossoriae, Pannota, Caenoidea and Ephemerelloidea were supported as monophyletic, as were many of the families. However, some recognized families (for example, Ameletopsidae and Coloburiscidae) and major lineages (such as Setisura, Pisciforma and Ephemeroidea among others) were not supported as monophyletic, mainly due to convergences within nymphal characters. Clade robustness was evaluated by multiple methods and approaches.  相似文献   

18.
19.
Abstract. The type genus for the dragonfly family Libellulidae is Libellula. At present, Libellula s.l. includes twenty-nine species, whose distribution is largely Nearctic. Whether two other libellulid taxa, Ladona and Plathemis, should be considered synonyms of Libellula, subgenera of Libellula, or separate genera, has been a subject of intermittent debate for over a century. Earlier proposals concerning Ladona and Plathemis were based on a limited number of morphological characters and lacked rigorous phylogenetic analyses. Therefore, we used the DNA sequence of a portion of the mitochondrial 16S rRNA gene and parsimony, maximum likelihood and neighbour-joining analyses to explore whether Ladona and Plathemis are monophyletic lineages distinct from Libellula. We obtained ≈ 415 bp of DNA sequence from twenty-three taxa including thirteen species of Libellula s.s., all three recognized species of Ladona, the two species of Plathemis and representatives of four other libellulid genera. Tetragoneuria williamsoni (Odonata: Corduliidae) was included as the outgroup. Parsimony analysis suggested that Ladona and Plathemis are monophyletic lineages distinct from Libellula s.s. with a sister group relationship between Libellula and Ladona. The monophyly of Ladona, Plathemis and Libellula was supported in > 90% of bootstrap replications and in trees five to ten steps longer than the most parsimonious trees. Relationships inferred from maximum likelihood and neighbour-joining analyses also supported the monophyly of Ladona and Plathemis. The four other libellulid genera included in the study formed a monophyletic clade distinct from Libellula, Ladona and Plathemis. Based on our analysis, we propose that Ladona and Plathemis be considered either genera or subgenera within Libellulidae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号