首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rice is known to be sensitive to soil water deficit and evaporative demand, with a greatest sensitivity of lowland‐adapted genotypes. We have analysed the responses of plant water relations and of leaf elongation rate (LER) to soil water status and evaporative demand in seven rice genotypes belonging to different species, subspecies, either upland‐ or lowland‐adapted. In the considered range of soil water potential (0 to ?0.6 MPa), stomatal conductance was controlled in such a way that the daytime leaf water potential was similar in well‐watered, droughted or flooded conditions (isohydric behaviour). A low sensitivity of LER to evaporative demand was observed in the same three conditions, with small differences between genotypes and lower sensitivity than in maize. The sensitivity of LER to soil water deficit was similar to that of maize. A tendency towards lower sensitivities was observed in upland than lowland genotypes but with smaller differences than expected. We conclude that leaf water status and leaf elongation of rice are not particularly sensitive to water deficit. The main origin of drought sensitivity in rice may be its poor root system, whose effect was alleviated in the study presented here by growing plants in pots whose soil was entirely colonized by roots of all genotypes.  相似文献   

2.
3.
Expression of the genes le20, ni3212, le25 and lcyp2 was quantified in relation to soil and plant water status for pot-grown tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) in a replicated trial in a partially environmentally controlled glasshouse. Leaf water potential, relative water content, stomatal conductance and gravimetric soil water content were measured at 0800,1200 and 1600 h on three days during the imposition of three different watering regimes. Paired leaf samples were analysed for mRNA. Plant-to-plant variability was quantified and partitioned. le20 mRNA was found in all leaves and responded both to short-term diurnal fluctuations in water status and to more severe stress, though with reduced sensitivity to the greatest stresses. An overnight decline in le20 mRNA was independent of soil or plant water status. The pattern of expression for ni3212 was similar though ni3212 mRNA was much more abundant and the overnight drop in expression was not significant. le25 mRNA was only detected where leaf water potential was below ?0.9 MPa and increased linearly with further decline in leaf water potential. lcyp2 was constitutively expressed with a diurnal pattern characterized by a sharp depression at 1600 h but with expression being enhanced by increasing water deficit at all times. The control and significance of the four genes are discussed in relation to the proposed function of their respective gene products.  相似文献   

4.
Six months-old seminal plants of 36 cacao genotypes grown under greenhouse conditions were subjected to two soil water regimes (control and drought) to assess, the effects of water deficit on growth, chemical composition and oxidative stress. In the control, soil moisture was maintained near field capacity with leaf water potentials (ΨWL) ranging from −0.1 to −0.5 MPa. In the drought treatment, the soil moisture was reduced gradually by withholding additional water until ΨWL reached values of between −2.0 to −2.5 MPa. The tolerant genotypes PS-1319, MO-20 and MA-15 recorded significant increases in guaiacol peroxidase activity reflecting a more efficient antioxidant metabolism. In relation to drought tolerance, the most important variables in the distinguishing contrasting groups were: total leaf area per plant; leaf, stem and total dry biomass; relative growth rate; plant shoot biomass and leaf content of N, Ca, and Mg. From the results of these analyses, six genotypes were selected with contrasting characteristics for tolerance to soil water deficit [CC-40, C. SUL-4 and SIC-2 (non-tolerant) and MA-15, MO-20, and PA-13 (tolerant)] for further assessment of the expression of genes NCED5, PP2C, psbA and psbO to water deficit. Increased expression of NCED5, PP2C, psbA and psbO genes were found for non-tolerant genotypes, while in the majority of tolerant genotypes there was repression of these genes, with the exception of PA-13 that showed an increased expression of psbA. Mutivariate analysis showed that growth variables, leaf and total dry biomass, relative growth rate as well as Mg content of the leaves were the most important factor in the classification of the genotypes as tolerant, moderately tolerant and sensitive to water deficit. Therefore these variables are reliable plant traits in the selection of plants tolerant to drought.  相似文献   

5.
In order to study seminal roots morphology in barley grown under different water treatments, experiments were carried out under glasshouse-controlled conditions. Eight genotypes were cultivated under four water treatments (100, 75, 50 and 25% of field capacity). Seminal root length and root-to-shoot dry matters' ratio were measured. Root volume was assessed at three soil depths. Results showed broad genotypic differences for all traits. The effect of low and moderate water deficit was slight. In contrast, the impact of severe water treatment was strongly marked on all traits. The impact of water deficit intensity on root traits at different soil depths is discussed.  相似文献   

6.
In experiments with potted plants, the relationships between soil matric potential, plant water potential and production of water droplets (leaf surface wetness) on the folded central whorl leaf of seedlings of sorghum genotypes that are either resistant or susceptible to shoot fly (Atherigona soccata) damage were investigated. Differences in soil matric potentials in the pots affected the plant water status, which in turn had profound effects on the production of water droplets on the central whorl leaf of the sorghum genotype susceptible to shoot fly. There was no consistent variation in the relationship between plant water potential and soil matric potential of resistant and susceptible sorghum genotypes. However, there was very little or practically no water droplets on the central whorl leaf of the resistant genotypes, indicating that the production of water droplets is not solely the result of internal water status of the plant. It is suggested that leaf surface wetness is genetically controlled and that an understanding of the mechanism by which water is transferred to the leaf surface will enhance breeding for resistance to shoot fly.  相似文献   

7.
During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.  相似文献   

8.
Soil water status and its effect on plant water status are commonly evaluated for water stress diagnosis in annual crops. We investigated the application of this method to vineyards, using the fraction of transpirable soil water (FTSW) to characterise the soil water deficit experienced by the plant. The stability of the relationship between FTSW and predawn leaf water potential (Ψp) was analysed over two years (2000–2001), in two contrasted soils in vineyards in south eastern France, both planted with the cultivar Syrah, but grafted on different rootstocks (SO4 and 140Ru). FTSW was determined from soil moisture measurements performed with a neutron probe down to 2.5 m, under the rows and between the rows (3 replicates in each case). Vertical and horizontal variations in soil water content were analysed and the upper and lower limits of total vine’s transpirable soil water (TTSW) were calculated for each soil. The lower limit was also compared with the value of soil moisture content determined at −1.5 MPa in the laboratory. FTSW could be calculated for the soil depth analysed, without distinguishing horizontal position (row or inter-row). The lower limit of TTSW for vine was higher than the soil water content at −1.5 MPa, except in the upper horizons (0–0.2 m) which are prone to soil evaporation. A single relationship between Ψp and FTSW was obtained for the two vineyards and for the two years of measurement. This relationship was similar to that established by Lebon et al. (2003) on Gewürztraminer/SO4 in a vineyard in northern France. FTSW can therefore be used as an indicator of the water deficit experienced in vineyards, provided that TTSW is correctly estimated.  相似文献   

9.
10.
11.
12.
Background and AimsPrevious laboratory studies have suggested selection for root hair traits in future crop breeding to improve resource use efficiency and stress tolerance. However, data on the interplay between root hairs and open-field systems, under contrasting soils and climate conditions, are limited. As such, this study aims to experimentally elucidate some of the impacts that root hairs have on plant performance on a field scale.MethodsA field experiment was set up in Scotland for two consecutive years, under contrasting climate conditions and different soil textures (i.e. clay loam vs. sandy loam). Five barley (Hordeum vulgare) genotypes exhibiting variation in root hair length and density were used in the study. Root hair length, density and rhizosheath weight were measured at several growth stages, as well as shoot biomass, plant water status, shoot phosphorus (P) accumulation and grain yield.Key ResultsMeasurements of root hair density, length and its correlation with rhizosheath weight highlighted trait robustness in the field under variable environmental conditions, although significant variations were found between soil textures as the growing season progressed. Root hairs did not confer a notable advantage to barley under optimal conditions, but under soil water deficit root hairs enhanced plant water status and stress tolerance resulting in a less negative leaf water potential and lower leaf abscisic acid concentration, while promoting shoot P accumulation. Furthermore, the presence of root hairs did not decrease yield under optimal conditions, while root hairs enhanced yield stability under drought.ConclusionsSelecting for beneficial root hair traits can enhance yield stability without diminishing yield potential, overcoming the breeder’s dilemma of trying to simultaneously enhance both productivity and resilience. Therefore, the maintenance or enhancement of root hairs can represent a key trait for breeding the next generation of crops for improved drought tolerance in relation to climate change.  相似文献   

13.
14.
Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil–plant–atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.  相似文献   

15.
The high-throughput phenotypic analysis of Arabidopsis thaliana collections requires methodological progress and automation. Methods to impose stable and reproducible soil water deficits are presented and were used to analyse plant responses to water stress. Several potential complications and methodological difficulties were identified, including the spatial and temporal variability of micrometeorological conditions within a growth chamber, the difference in soil water depletion rates between accessions and the differences in developmental stage of accessions the same time after sowing. Solutions were found. Nine accessions were grown in four experiments in a rigorously controlled growth-chamber equipped with an automated system to control soil water content and take pictures of individual plants. One accession, An1, was unaffected by water deficit in terms of leaf number, leaf area, root growth and transpiration rate per unit leaf area. Methods developed here will help identify quantitative trait loci and genes involved in plant tolerance to water deficit.  相似文献   

16.
This contribution provides better insights in the water relations and the physiological traits of four commercial poplar genotypes of different genetic background, 'Bakan', 'Oudenberg', 'Koster' and 'Grimminge'. The main continuous (nondestructive and providing continuous and automated data records) and discontinuous (destructive and not allowing automation) plant water status (PWS) indicators were monitored at a multigenotype, commercial‐scale short‐rotation coppice plantation in East‐Flanders (Belgium), and their relationships with the principal environmental variables were assessed. All measurements were performed during the entire 2016 growing season on the third year of the third rotation in multistemmed trees. The discontinuous PWS indicators were measured on 10 separate days with a different evaporative demand and soil water content, while the continuous PWS indicators were recorded from April to November. The genotypes responded differently to environmental drivers and to soil conditions, based on the PWS indicators, featuring a different water behaviour in relation to the level of isohydricity. Poplar genotypes 'Koster' and 'Bakan' showed the typical water‐conserving behaviour of isohydric species, while 'Grimminge' was more in line with the anisohydric ones. A principal component analysis showed that sap flow (Fs) was the most suitable PWS indicator. The Fs and therefore the sap flow‐based canopy transpiration (Ec) were tightly linked to the phenological stage of the trees as well as to vapour pressure deficit and photosynthetic photon flux density, based on relationships between Ec and environmental variables. A quantitative predictive model was developed to estimate the crop water requirements for specific genotypes, by calculating transpiration per unit of ground area with a few environmental variables, monitored with easy‐to‐handle sensors.  相似文献   

17.
A field experiment on olive trees (Olea europaea L.) was designed with the objective to search for an optimum irrigation scheduling by analyzing the possible effects of deficit irrigation. Treatments were: a non-irrigated control (rainfed) and three treatments that received seasonal water amount equivalent to 33 and 66% of crop evapotranspiration (ETC) in the period August–September (respectively 33II and 66II), and 66% of (ETC) from late May to early October (66I-II). Atmospheric evaporative demand and soil moisture conditions were regularly monitored. Irrigation effects on plant water relations were characterized throughout a growing season. Whole-plant water use, in deficit irrigated (66I-II) and rainfed olive trees, was determined using a xylem sap flow method (compensation heat-pulse technique). The magnitude of variations in water use and the seasonal dynamic of water relations varied among treatments, suggesting that olive trees were strongly responsive to both irrigation amount and time. Physiological parameters responded to variations in tree water status, soil moisture conditions and atmospheric evaporative demand. All measurements of tree water status were highly correlated with one another. There was a considerable degree of agreement between daily transpiration deduced from heat-pulse velocity and that determined by calibration using the water balance technique. Deficit irrigation during the whole summer (66I-II) resulted in improved plant water relations with respect to other watering regimes; while, severe regulated deficit irrigation differentiated only slightly 33II treatment from rainfed plants. Nevertheless, regulated deficit irrigation of olive trees after pit hardening (66II) could be recommended, at least in soil, cultivar and environmental conditions of this study.  相似文献   

18.
In citrus, the majority of fine roots are distributed near the soil surface – a region where conditions are frequently dry and temperatures fluctuate considerably. To develop a better understanding of the relationship between changes in soil conditions and a plant’s below‐ground respiratory costs, the effects of temperature and soil drying on citrus root respiration were quantified in controlled greenhouse experiments. Chambers designed for measuring the respiration of individual roots were used. Under moist soil conditions, root respiration in citrus increased exponentially with changes in soil temperature (Q10 = 1·8–2·0), provided that the changes in temperature were short‐term. However, when temperatures were held constant, root respiration did not increase exponentially with increasing temperatures. Instead, the roots acclimated to controlled temperatures above 23 °C, thereby reducing their metabolism in warmer soils. Under drying soil conditions, root respiration decreased gradually beginning at 6% soil water content and reached a minimum at <2% soil water content in sandy soil. A model was constructed from greenhouse data to predict diurnal patterns of fine root respiration based on temperature and soil water content. The model was then validated in the field using data obtained by CO2 trapping on root systems of mature citrus trees. The trees were grown at a site where the soil temperature and water content were manipulated. Respiration predicted by the model was in general agreement with observed rates, which indicates the model may be used to estimate entire root system respiration for citrus.  相似文献   

19.
半干旱黄土区成熟柠条林地土壤水分利用及平衡特征   总被引:3,自引:0,他引:3  
选择半干旱黄土区流域尺度不同地形条件下成熟柠条林作为研究对象,并以荒坡草地作为对照,在2009—2011年生长季节对0—210cm土壤含水量进行连续观测,开展了剖面土壤水分变异、动态平衡及影响因素研究。结果显示:土壤水分平均值:30—130cm对照>北坡>东坡>南坡,150—210cm南坡(上、中坡位)>对照>北坡>东坡,南坡和北坡样地上坡位>中坡位>下坡位。土壤水分的季节变化表现为9月﹥8月﹥7月,5、6、10月份最低;不同地形条件下,柠条林地土壤水分极差值和变异系数并没呈现出规律性变化,在垂直尺度上,柠条林地土壤水分极差值和变异系数曲线在0—50cm表现比较活跃,70—210cm则相对稳定;在连续干旱年份土壤储水量并没有连续的降低和亏缺,在第1个欠水年亏缺比较严重,第2个欠水年盈亏量基本平衡,而第3个欠水年则略有盈余。研究认为:小流域尺度下的地形条件差异造成了土壤水分规律性变化,但在特定植被生长发育状态和剖面尺度下,植被因子将会成为土壤水分动态变化的主控因子。柠条林发育至成熟阶段,土壤水分补偿与消减将会保持平衡状态。土壤水分与植被生长的相互关系一方面表现出一定的时间差,另一方面植被对土壤水分也具有一定的适应性。这是因为土壤含水率高促进植物生长,植物生长势增强会进一步加大对土壤水分的消耗,土壤水分含量不足则会抑制植物生长,植物生长势减弱会进一步降低对土壤水分的消耗。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号