首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of neurohaemal areas on abdominal nerves of the blood-sucking bug Rhodnius prolixus was investigated. Four types of axon terminals were found, distinguished by the morphology of their neurosecretory granules. By use of post-embedding immunogold labelling, granules in Type I axon terminals were shown to contain serotonin-like immunoreactive material, and granules in Type II axon terminals were shown to contain FMRFamide-like immunoreactive material. There was no colocalization of these materials. It is suggested that Type III terminals contain peptidergic diuretic hormone, which has previously been reported to be present in electron-dense neurosecretory granules in this neurohaemal area. The identity of material in Type IV terminals is unknown.  相似文献   

2.
The ultrastructure of the retrocerebral endocrine-aortal complex of the earwig, Euborellia annulipes has been studied. The space between the inner and outer stromal layers of the aorta is occupied by numerous axon terminals and pre-terminals containing large electron dense granules (NS-I) of approximately 100 to 220 nm and a few axon terminals having small granules (NS-II) of approximately 40 to 90 nm; the former appear to belong to medial neurosecretory A-cells, and the latter to the B-cells of the brain. The corpora cardiaca consist of intrinsic cells with mitochondria and multivesicular bodies. Granules of type NS-II and NS-III are observed in the axon terminals and pre-terminals in the corpora cardiaca. The NS-II are identical to those found in the aorta and are probably the secretions of the lateral B-cells. Granules of type NS-III are 40 to 120 nm and electron dense, and are intrinsic in origin. Similar granules occur in the intrinsic cells of the corpora cardiaca. E M studies have confirmed the rôle of the aorta as a neurohaemal organ for the medial neurosecretory cells, and the corpora cardiaca for the lateral neurosecretory cells of the brain. The corpora cardiaca also act as a reservoir for the intrinsic secretion. The corpus allatum is a solid body consisting of parenchymal cells with prominent nuclei, mitochondria, and endoplasmic reticulum. In between its cells are occasional glial cells and also neurosecretory as well as non-neurosecretory axons. The gland is devoid of A-cell NSM.  相似文献   

3.
The neurosecretory system of Labedura riparia has been described from sections and whole mounts using a variety of techniques. The pars intercerebralis contains two clusters of medial neurosecretory cells (MNC), each cluster consisting of 8 to 10 A-cells and occasional B-cells. The lateral sides of the brain have a few B-cells. The axons of the median neurosecretory cells terminate in the cephalic aorta (AO), whereas the axons of the lateral neurosecretory cells (LNC) terminate in the corpora cardiaca (CC). It appears that the neurosecretory material (NSM) elaborated in the MNC is stored in the cephalic aorta and that elaborated in the LNC is stored in the corpora cardiaca, which are two oval or elongate bodies composed of large chromophobe and small chromophil cells. Posteriorly there is the oval or elongate corpus allatum (CA) attached to the CC by thick nerves. The CA consists of one cell type only. Both CC and CA contain no A-cell neurosecretory material. It has been suggested that the neurosecretory system of L. riparia is composed of two complexes. One is formed by the medial neurosecretory cells for which the aorta functions as a neurohaemal organ, and the other is formed by lateral neurosecretory cells-lateral neurosecretory pathways-nervi corporis cardiaci-II in which the corpora cardiaca function as a neurohaemal organ.  相似文献   

4.
The closer muscle of the mesothoracic spiracle of the locust, Schistocerca gregaria is innervated by two excitatory motoneurones and also by processes of a peripherally located neurosecretory cell. Within the muscle, ultrastructural studies show the presence of two types of excitatory nerve terminal which differ in the content of dense cored vesicles and in their distribution. The ventral segment of the muscle is innervated predominantly by terminals with small clear vesicles and only an occasional dense-cored vesicle. The central part of the muscle is innervated predominantly by terminals with small clear vesicles and larger numbers of dense-cored vesicles. The dorsal segment of the muscle is innervated exclusively by a neurosecretory type innervation. The small neurohaemal organ of the median nerve close to the spiracle muscle is immunoreactive to an antibody raised against bovine pancreatic polypeptide but no immunoreactive processes enter the muscle itself. The muscle possesses specific octopaminergic receptors that increase cyclic AMP levels and the possibility that the neurosecretory input to the muscle is provided by either a central or peripheral octopamine containing neurone is discussed.  相似文献   

5.
Electron microscopy of the cerebral ganglionic commissure of the leech Macrobdella decora (Say, 1824) revealed numerous neurosecretory axons terminating in the neural lamella of both the inner and outer capsules, and in the neural lamella deep within the neuropile. The proximal protions of the terminals, with an investment of glial tissue, contain either numerous large homogeneously electron dense granules, or numerous large granules of varying electron density. The distal portions, often devoid of glia, display numerous infoldings, omega profiles, and electron dense focal sites, and contain numerous neurosecretory granules, small lucent vesicles, and, occasionally, acanthosomes. Statistical analysis of the size distribution and morphology of the neurosecretory granules showed that in many individual terminals the granules are not significantly different from those seen within four groups of neurosecretory cells found in the cerebral ganglion. These terminals, because of their diffuse nature, probably represent a neurohemal complex of a primitive nature. The term “intralamellar complexes” is proposed to describe the form and location of these neurosecretory terminals.  相似文献   

6.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

7.
The neurohypophysis of the opossum (Didelphis virginiana) was studied by electron microscopy in order to amplify Bodian''s classic light microscopic observations in which he demonstrated a definite lobular pattern. The lobule of the opossum neurohypophysis is divided into three regions: a hilar, a palisade, and a septal zone. The hilar portion contains bundles of nerve fibers, the extensions of the hypothalamo-hypophyseal tract containing neurofilaments but few neurosecretory granules. In the opossum, pituicytes have a densely fibrillar cytoplasm. Herring bodies are prominent in the hilar region. They are large bodies packed with neurosecretory granules that have been described as end bulb formations of axons. From the hilar region, axons fan out into a palisade zone where the nerve terminals packed with neurosecretory granules, mitochondria, and microvesicles abut upon basement membranes. The neurosecretory granules are similar to those present in the neurohypophysis of other mammals, except for an occasional huge granule of distinctive type. Material morphologically and histochemically resembling glycogen occurs as scattered particles and as aggregates within nerve fibers. The septal zone, containing collagen, fibroblasts, and numerous small capillaries, is separated from the adjacent glandular tissue by a basement membrane.  相似文献   

8.
Summary Innervation of the antennal heart, an independent accessory circulatory motor in the head of insects, was investigated in the cockroach Periplaneta americana by use of axonal cobalt filling and transmission electron microscopy. The muscles associated with this organ are innervated by neurones located in a part of the suboesophageal ganglion, generally considered to be formed by the mandibular neuromere. Dorsal unpaired median (DUM) and paired contralateral neurones were stained. The axons of all these neurones run along the circumoesophageal connectives and through the paired nervus corporis cardiaci III into the corpora cardiaca. They pass through these organs forming fine arborizations there and exit anteriorly as a small pair of nerves which terminate at the antennal heart-dilator muscles. Numerous branches of these nerves extend beyond the lateral borders of the large transverse dilator muscle and terminate in the ampullar walls of the antennal heart. These neurosecretory fibres form neurohaemal areas which obviously release their products into the haemolymph, which is pumped into the antennae. The possible functions of the neurones associated with the antennal heart are discussed with respect to both, their role as a modulatory input for the circulatory motor and as a neurohormonal release site.  相似文献   

9.
The exocytosis level in the neurosecretory terminals of the aorta wall, was studied by electron-microscopy in female Labidura riparia during different stages of the reproductive period: end of vitellogenesis, beginning, middle and end of egg-laying, and during egg-care.The exocytosis level (L. ex) in the terminals which are filled with big dense elementary granules is low at the end of vitellogenesis (L. ex = 0.28), the level increases 8 times when the first egg is passing under the genital plate, reaching a maximum level (2.46) when approximately ten eggs have been laid. The level then decreases at the end of egg-laying (1.8) and abruptly falls when the female begins her egg-care cycle. Throughout this period, the exocytosis level stays between 0.54 and 0.76.These results show a significant release of brain neurosecretory product at the neurohaemal part of the aorta during egg-laying. This suggests that egg-laying could be regulated by a brain hormone.  相似文献   

10.
The incidence of diapause was shown to be determined humorally during the larval-pupal ecdysis by means of brain extirpation experiments.On the basis of this observation, light and electron microscopic changes in the neurosecretory type II cells in the pars intercerebralis-corpus cardiacum system during pharate pupal and early pupal stages were examined in insects reared under long day-length (non-diapause individuals) and in insects reared under short day-length (diapause individuals). In the diapause individuals, neurosecretory granules in NS-II cells increased during the pupal instar and large aggregates of granules packed the cytoplasm. Thereafter, inclusion bodies showing cytoplasmic breakdown of the granules appeared.In the non-diapause individuals, on the contrary, electron micrographs suggesting the release of neurosecretory material from axon terminals were obtained just after the pupal ecdysis. There were very few granules, with many Golgi bodies and much rough ER 8 to 12 hr after the ecdysis.It is concluded that adult development is determined by the release of neurosecretory material from the axon terminals of NS-II cells at the larval-pupal ecdysis. If release does not occur, the pupae enter diapause. It is also thought that differences in day-length during the larval stages influence the activities of NS-II cells before pupation.  相似文献   

11.
12.
《The Journal of cell biology》1989,109(6):3425-3433
Nerve endings of the posterior pituitary are densely populated by dense- core neurosecretory granules which are the storage sites for peptide neurohormones. In addition, they contain numerous clear microvesicles which are the same size as small synaptic vesicles of typical presynaptic nerve terminals. Several of the major proteins of small synaptic vesicles of presynaptic nerve terminals are present at high concentration in the posterior pituitary. We have now investigated the subcellular localization of such proteins. By immunogold electron microscopy carried out on bovine neurohypophysis we have found that three of these proteins, synapsin I, Protein III, and synaptophysin (protein p38) were concentrated on microvesicles but were not detectable in the membranes of neurosecretory granules. In addition, we have studied the distribution of the same proteins and of the synaptic vesicle protein p65 in subcellular fractions of bovine posterior pituitaries obtained by sucrose density centrifugation. We have found that the intrinsic membrane proteins synaptophysin and p65 had an identical distribution and were restricted to low density fractions of the gradient which contained numerous clear microvesicles with a size range the same as that of small synaptic vesicles. The peripheral membrane proteins synapsin I and Protein III exhibited a broader distribution extending into the denser part of the gradient. However, the amount of these proteins clearly declined in the fractions preceding the peak of neurosecretory granules. Our results suggest that microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of all other nerve terminals and argue against the hypothesis that such vesicles represent an endocytic byproduct of exocytosis of neurosecretory granules.  相似文献   

13.
Summary Electron microscopic localization of acid phosphatase (AcPase) was carried out on posterior pituitary glands from rats. An estimated 5% of the neurosecretory nerve terminals contained structures which showed reaction product. Most of the lysosomes were small dense bodies, often with a membranous substructure. Other lysosomes were larger in size or were found within vacuoles. AcPase was also localized to lysosomes and the Golgi apparatus of pituicytes. Evidence is presented which would associate the large lipid droplets characteristic of pituicytes with AcPase-positive dense bodies. The present study indicates that hydrolytic activity by lysosomes occurs within the terminals of neurosecretory cells, and adds further support to the concept that this process represents a normal phenomenon of cells and their extensions in general.Supported by the Medical Research Council of Canada.Medical Research Associate of the Medical Research Council of Canada.  相似文献   

14.
Parallel observations on central synaptic and neurohaemal terminals of the same types of neurosecretory fibres in the polychaete annelid Nereis diversicolor reveal that their respective populations of inclusions exhibit identical, highly distinctive patterns of affinity for the zinc iodide-osmium tetroxide (ZIO) reagent. The method highlights the duality of possible secretory inclusions in nerve terminals. Many typical synaptic/synaptoid vesicles have ZIO-positive contents, but intermingle with unreactive vesicles. Both positively and negatively reacting vesicles contribute to the unusual dense clusters associated with sites of release of neurochemical mediators, characteristic of polychaete nervous systems. Fewer dense-cored synaptic/synaptoid vesicles have reactive cores. The larger ‘storage granules’ typically have unreactive contents, but dense deposits form within a small minority. A possible cytophysical, in contradistinction from a cytochemical, basis of affinity for ZIO is discussed. The results further support the postulated fundamental identity of synaptic and synaptoid vesicles.  相似文献   

15.
M V Ugryumov 《Tsitologiia》1975,17(4):407-413
Herring bodies were revealed in the reorganized hypophyseal stalk of rats two months after hypophysectomy both in normal laboratory condition and under salt load. We observed Herring bodies with a storage of neurosecretory granules and neurohormones, as well as with massive destruction and disappearance of neurosecretory granules due to release of hormones in neuroplasm. Many Herring bodies were characterized by degenerative changes probably associated with aging of neurosecretory cells or their lesion due to the operation. Occasionally we revealed Herring bodies which contained a network of dilated neurotubules, that probably reflected either the reparative phase of secretory cycle of corresponding neurosecretory cells or restoration of their functions after hypophysectomy. Herring bodies were often situated around capillaries, but they were separated from perivascular space with narrow sprouts of pituicytes.  相似文献   

16.
Injections of haemolymph, organ extracts and various other substances, as well as in vitro experiments, show that ovary and oviduct extracts on the one hand, and dibutyryl cyclic AMP on the other, enhance ovulation, whereas parturition is stimulated by extracts of the brain, thoracic ganglionic mass, nerve XVII, different parts of the genital apparatus and perhaps proctolin. On the contrary, the proximal neurohaemal organs (corpus cardiacum and perisympathetic organs) appear to contain a substance inhibiting parturition. Lastly, normal intact flies cannot respond to extracts facilitating parturition in decapitated flies. Neuromuscular junctions probably containing peptides and neurotransmitters are described in the muscles of the ovaries, oviducts and the vaginal aperture. Other junctions containing neurotransmitters only are present in uterine and intersegmental muscles. The neurohaemal areas of nerve XVII contain 3 types of peptidergic terminals. From our overall results it is concluded that ovulation is regulated by neurosecretory products released at neuromuscular junctions in the ovaries and oviducts. Parturition control is more complicated. A first neurohormone (parturition-stimulating hormone) appears to be produced in the nerve centres and released in neurohaemal areas located on nerve XVII in the vicinity of the uterus; it enhances the contraction of this organ. A second neurohormone, the parturition-inhibiting hormone may be released in the corpora cardiaca and the median perisympathetic organ. A cephalic nervous factor might exert inhibitory action.  相似文献   

17.
Garlov PE 《Tsitologiia》2002,44(8):747-767
Mass accumulation and storage of neurosecretory products are typical only for nonapeptidergic elements, as it has been shown by our study of the structure and function in neurosecretory cells of different nature. All liberinergic, statinergic and monoaminergic neurosecretory cells keep constancy in the state of high functional activity of extrusive processes at normal conditions. Morpho-functional features of these elements principally differ from those of nonapeptidergic neurosecretory cells, which are characterized by remarkable secretory cycles. The extremely large size of elementary secretory granules, maximum development of the Herring bodies, various modes of secretion, secretory and extrusive cycles in neurosecretory function, and massive accumulation of neurosecretory granules occurring in neurosecretory terminals finally, all these characters are considered to be the primary features of a high plasticity of the nonapeptidergic neurosecretory cell. A high reactivity of nonapeptidergic neurosecretory cells has been demonstrated here by the quantitative ultrastructural research of the dynamics of functional activity of neurosecretory terminals at both experimental and physiological stressful states. The highest plasticity of nonapeptidergic neurosecretory cells compared to all other neurosecretory cell types may be provided by their ability to restore the initial law level of functional activity, referred to as "functional reversion".  相似文献   

18.
An electron-microscopic study was carried out on the median eminence of cats during post-natal development. From the moment of birth (observations performed 12 hours later) Herring bodies were seen in the fibrillary layer of the median eminence. At 45 days after birth, myelinated nerve fibres could be observed, some of them containing neurosecretory granules. The number of myelinated fibres in the median eminence increased with age and at 90 days some Herring bodies appeared surrounded by myelin sheaths; these mainly contained neurosecretory granules and a few mitochondria.  相似文献   

19.
Summary The posterior part of the median eminence of the albino mouse (CF # 1-JCL) contains a cluster of myelinated axons beneath the tanycyte layer. Among them, small Herring bodies surrounded by myelin sheaths are revealed by electron microscopy. These structures contain electron-dense bodies, lamellar bodies, autophagic bodies, autophagic vacuoles, and neurofilaments. A few neurosecretory granules and mitochondria are also present. Some myelinated axons contain mostly accumulated neurosecretory granules.  相似文献   

20.
Zs. Liposits  W.K. Paull 《Peptides》1985,6(6):1021-1036
The corticotropin releasing factor (CRF)-immunoreactive paraventriculo-infundibular neuronal system of long-term adrenalectomized and adrenalectomized-short term dexamethasone treated rats was analyzed at the ultrastructural level using the preembedding peroxidase anti-peroxidase complex (PAP)-immunohistological method. In both groups of animals, parvocellular neurons located in the medial and dorsal subnuclei of the paraventricular nucleus (PVN) showed CRF-like immunoreactivity. The perikarya contained hypertrophied rough endoplasmic reticulum (rER) with dilated cisternae, active Golgi-complexes and numerous neurosecretory granules. The majority of the neurosecretory granules measured 80–120 nm. Dendrites of CRF-immunoreactive neurons contained labeled vesicles, secretory granules, bundles of microtubules, a well-developed smooth endoplasmic reticulum (sER) complex and free ribosomes. Unlabeled terminal boutons of axons were observed to synapse on dendrites and somata of CRF-neurons. In addition, CRF perikarya were found in direct somato-somatic apposition with both CRF-immunopositive and immunonegative parvocellular cells. Retraction of glial processes and the existence of puncta adherentia between the cell membranes characterized these appositions. Varicose CRF axons within the median eminence contained hypertrophied sER, labeled vesicles and neurosecretory granules. The preterminal portions of the CRF-axons were dilated and possessed many labeled 80–120 nm diameter granules. CRF-terminals were greatly enlarged and established direct neurohemal contacts with the external limiting basal lamina of portal vessels without the interposition of tanycytic ependymal foot-processes. These tanycytes were not CRF immunopositive. CRF positive terminals contained clusters of microvesicles, labeled small vesicles and multivesicular bodies, but fewer granular elements than were observed within the preterminals. Many of the labeled organelles were attached to tubules of sER. Occasionally, CRF-axons were observed within the pericapillary space adjacent to portal vessels. The ultrastructural features of CRF-neurons, obtained from adrenalectomized and adrenalectomized plus short-term dexamethasone treated rats did not differ significantly from each other. The hormone content of the entire CRF-neuron was greater in the steroid treated group. Adrenocorticotrophic hormone (ACTH) synthesizing cells in the pars distalis of adrenalectomized-dexamethasone treated rats also showed increased numbers of immunopositive secretory granules (150–320 nm in diameter). These ultrastructural morphological results provide evidence that the function of the paraventriculo-infundibular CRF-system is adrenal steroid hormone dependent and suggest the participation of glial and ependymal elements in the regulation of the system in this hyperfunctional state. The observed membrane specializations are indicative of ephaptic interactions between CRF-neurons and may serve a synchronizing function in adrenalectomized animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号