首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydraulic architecture imposes a fundamental control on water transport, underpinning plant productivity, and survival. The extent to which hydraulic architecture of mature trees acclimates to chronic drought is poorly understood, limiting accuracy in predictions of forest responses to future droughts. We measured seasonal shoot hydraulic performance for multiple years to assess xylem acclimation in mature piñon (Pinus edulis ) and juniper (Juniperus monosperma ) after 3+ years of precipitation manipulation. Our treatments consisted of water addition (+20% ambient precipitation), partial precipitation‐exclusion (?45% ambient precipitation), and exclusion‐structure control. Supplemental watering elevated leaf water potential, sapwood‐area specific hydraulic conductivity, and leaf‐area specific hydraulic conductivity relative to precipitation exclusion. Shifts in allocation of leaf area to sapwood area enhanced differences between irrigated and droughted K L in piñon but not juniper. Piñon and juniper achieved similar K L under ambient conditions, but juniper matched or outperformed piñon in all physiological measurements under both increased and decreased precipitation treatments. Embolism vulnerability and xylem anatomy were unaffected by treatments in either species. Absence of significant acclimation combined with inferior performance for both hydraulic transport and safety suggests piñon has greater risk of local extirpation if aridity increases as predicted in the southwestern USA.  相似文献   

2.
Plant hydraulic conductance (ks) is a critical control on whole‐plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long‐term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem‐scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole‐plant ks also reduced carbon assimilation in both species, as leaf‐level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole‐plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought‐related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.  相似文献   

3.
Drought‐induced forest mortality is an increasing global problem with wide‐ranging consequences, yet mortality mechanisms remain poorly understood. Depletion of non‐structural carbohydrate (NSC) stores has been implicated as an important mechanism in drought‐induced mortality, but experimental field tests are rare. We used an ecosystem‐scale precipitation manipulation experiment to evaluate leaf and twig NSC dynamics of two co‐occurring conifers that differ in patterns of stomatal regulation of water loss and recent mortality: the relatively desiccation‐avoiding piñon pine (Pinus edulis) and the relatively desiccation‐tolerant one‐seed juniper (Juniperus monosperma). Piñon pine experienced 72% mortality after 13–25 months of experimental drought and juniper experienced 20% mortality after 32–47 months. Juniper maintained three times more NSC in the foliage than twigs, and converted NSC to glucose and fructose under drought, consistent with osmoregulation requirements to maintain higher stomatal conductance during drought than piñon. Despite these species differences, experimental drought caused decreased leaf starch content in dying trees of both species (P < 0.001). Average dry‐season leaf starch content was also a good predictor of drought‐survival time for both species (R2 = 0.93). These results, along with observations of drought‐induced reductions to photosynthesis and growth, support carbon limitation as an important process during mortality of these two conifer species.  相似文献   

4.
Drought‐related tree mortality occurs globally and may increase in the future, but we lack sufficient mechanistic understanding to accurately predict it. Here we present the first field assessment of the physiological mechanisms leading to mortality in an ecosystem‐scale rainfall manipulation of a piñon–juniper (Pinus edulisJuniperus monosperma) woodland. We measured transpiration (E) and modelled the transpiration rate initiating hydraulic failure (Ecrit). We predicted that isohydric piñon would experience mortality after prolonged periods of severely limited gas exchange as required to avoid hydraulic failure; anisohydric juniper would also avoid hydraulic failure, but sustain gas exchange due to its greater cavitation resistance. After 1 year of treatment, 67% of droughted mature piñon died with concomitant infestation by bark beetles (Ips confusus) and bluestain fungus (Ophiostoma spp.); no mortality occurred in juniper or in control piñon. As predicted, both species avoided hydraulic failure, but safety margins from Ecrit were much smaller in piñon, especially droughted piñon, which also experienced chronically low hydraulic conductance. The defining characteristic of trees that died was a 7 month period of near‐zero gas exchange, versus 2 months for surviving piñon. Hydraulic limits to gas exchange, not hydraulic failure per se, promoted drought‐related mortality in piñon pine.  相似文献   

5.
Recent studies suggest that physiological traits can be affected by tree size due to stronger hydraulic limitation in taller trees. As trees vary greatly in size, both within and among species, the adaptive responses to hydraulic limitation may be different among species with different maximum sizes. To investigate this, we explored size-dependency in photosynthetic and hydraulic parameters of three Acer species (Acer mono Maxim., Acer amoenum Carr and Acer japonicum Thunb.) using trees of various sizes under well-lit conditions. Leaf stomatal conductance of the Acer species decreased with tree size, implying that water supply to leaves decreases as trees grow. In contrast, content of nitrogen increased with tree size, which may compensate for the decrease in stomatal conductance to maintain the photosynthetic rate. Although the increase in nitrogen and leaf mass per area were larger in species with larger statures, the size-dependency in stomatal conductance was not different among species, and photosynthetic rate and hydraulic conductance were maintained in the three Acer species. Therefore, we suggest that hydraulic limitation on gas exchange does not necessarily depend on the maximum height of the species and that maintenance of photosynthesis and hydraulic properties is a fundamental physiological process during tree growth.  相似文献   

6.
Sustained drought and concomitant high temperature may reduce photosynthesis and cause tree mortality. Possible causes of reduced photosynthesis include stomatal closure and biochemical inhibition, but their relative roles are unknown in Amazon trees during strong drought events. We assessed the effects of the recent (2015) strong El Niño drought on leaf‐level photosynthesis of Central Amazon trees via these two mechanisms. Through four seasons of 2015, we measured leaf gas exchange, chlorophyll a fluorescence parameters, chlorophyll concentration, and nutrient content in leaves of 57 upper canopy and understory trees of a lowland terra firme forest on well‐drained infertile oxisol. Photosynthesis decreased 28% in the upper canopy and 17% in understory trees during the extreme dry season of 2015, relative to other 2015 seasons and was also lower than the climatically normal dry season of the following non‐El Niño year. Photosynthesis reduction under extreme drought and high temperature in the 2015 dry season was related only to stomatal closure in both upper canopy and understory trees, and not to chlorophyll a fluorescence parameters, chlorophyll, or leaf nutrient concentration. The distinction is important because stomatal closure is a transient regulatory response that can reverse when water becomes available, whereas the other responses reflect more permanent changes or damage to the photosynthetic apparatus. Photosynthesis decrease due to stomatal closure during the 2015 extreme dry season was followed 2 months later by an increase in photosynthesis as rains returned, indicating a margin of resilience to one‐off extreme climatic events in Amazonian forests.  相似文献   

7.
In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought‐induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re‐watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re‐watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re‐watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non‐hydraulic factors influenced stomatal behaviour post drought.  相似文献   

8.
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long‐term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light‐saturated net assimilation rate (Amax), stomatal conductance (gs), maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), mesophyll conductance to CO2 (gm) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long‐term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.  相似文献   

9.
Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co‐occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.  相似文献   

10.
We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (~45% reduction in precipitation), heat (~4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole‐plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.  相似文献   

11.
Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life forms. However, it has also been suggested that this relationship may become weak or break down completely within the angiosperms. We examined coordination between hydraulic, leaf vein, and gas‐exchange traits across a diverse group of 35 evergreen Australian angiosperms, spanning a large range in leaf structure and habitat. Leaf‐specific conductance was calculated from petiole vessel anatomy and was also measured directly using the rehydration technique. Leaf vein density (thought to be a determinant of gas exchange rate), maximal stomatal conductance, and net CO2 assimilation rate were also measured for most species (n = 19–35). Vein density was not correlated with leaf‐specific conductance (either calculated or measured), stomatal conductance, nor maximal net CO2 assimilation, with r2 values ranging from 0.00 to 0.11, P values from 0.909 to 0.102, and n values from 19 to 35 in all cases. Leaf‐specific conductance calculated from petiole anatomy was weakly correlated with maximal stomatal conductance (r2 = 0.16; P = 0.022; n = 32), whereas the direct measurement of leaf‐specific conductance was weakly correlated with net maximal CO2 assimilation (r2 = 0.21; P = 0.005; n = 35). Calculated leaf‐specific conductance, xylem ultrastructure, and leaf vein density do not appear to be reliable proxy traits for assessing differences in rates of gas exchange or growth across diverse sets of evergreen angiosperms.  相似文献   

12.
This study tested a multiplicative model of stomatal response to environment for drought‐affected trees of Eucalyptus globulus Labill. growing in southern Australia. The model incorporates a feed‐forward response to vapour pressure deficit of ambient air (δea) and performed well if evaluated using reduced major axis regression and log‐transformed data. There was strong evidence from gas‐exchange data, leaf water potentials and sapflow measurements of the feed‐forward response by stomata to leaf‐to‐air vapour pressure deficit (δel). The response of stomata to δel was irreversible. Stomatal conductance and the rate of net photosynthesis were highly correlated and declined, together with the rate of transpiration, throughout the afternoon as δea increased despite increasing leaf water potentials. The concentration of CO2 inside leaves (ci) increased as stomatal conductance declined indicating increasing non‐stomatal limitations to photosynthesis. The stomatal response to δel of E. globulus in the field is best described as an ‘apparent feed‐forward response’ that probably results from both slowly reversible depression of net photosynthesis and abscisic acid accumulation in guard cells. We suggest that the stomatal response to ci may strengthen the link between photosynthetic capacity and stomatal conductance during leaf drying as a result of either drought or large δ el.  相似文献   

13.
Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO2, vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area‐based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass‐based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts.  相似文献   

14.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

15.
The reduction of photosynthetic rates with tree age has been proposed as a major driver of the productivity declination along ontogeny. It is not clear, however, how environmental humidity affects stomatal conductance and biochemical potential of photosynthesis in trees belonging to different age-classes. We assessed daily cycles of gas exchange on leaves of juvenile and mature individuals of the tropical high-elevation tree Alnus jorullensis Kunth (Betulaceae), at two sites with contrasting precipitation in the Venezuelan Andes. Photosynthesis and stomatal conductance were higher in juvenile trees during the morning and at noon in the mesic site, and were in general similar between age-classes in the wet site. Under light-saturating conditions, the net photosynthetic rate was similar between the age-classes at the wet site and higher for juvenile trees at the mesic site, whereas stomatal conductance did not differ between age-classes and was higher at the wet site. Daily cycles of gas exchange and a type II regression model between photosynthesis and intercellular CO2 concentration indicated that the better performance of juvenile trees at the mesic site was due to lower non-stomatal limitations. These results support the proposal that non-stomatal limitations—rather than stomatal ones—are involved in the decay of photosynthesis in mature trees, and suggest that such limitations may be evident only under drier conditions.  相似文献   

16.
Phylogenetic analyses show that C4 grasses typically occupy drier habitats than their C3 relatives, but recent experiments comparing the physiology of closely related C3 and C4 species have shown that advantages of C4 photosynthesis can be lost under drought. We tested the generality of these paradoxical findings in grass species representing the known evolutionary diversity of C4 NADP‐me and C3 photosynthetic types. Our experiment investigated the effects of drought on leaf photosynthesis, water potential, nitrogen, chlorophyll content and mortality. C4 grasses in control treatments were characterized by higher CO2 assimilation rates and water potential, but lower stomatal conductance and nitrogen content. Under drought, stomatal conductance declined more dramatically in C3 than C4 species, and photosynthetic water‐use and nitrogen‐use efficiency advantages held by C4 species under control conditions were each diminished by 40%. Leaf mortality was slightly higher in C4 than C3 grasses, but leaf condition under drought otherwise showed no dependence on photosynthetic‐type. This phylogenetically controlled experiment suggested that a drought‐induced reduction in the photosynthetic performance advantages of C4 NADP‐me relative to C3 grasses is a general phenomenon.  相似文献   

17.
Flavescence dorée (FD) is among the major grapevine diseases causing high management costs; curative methods against FD are unavailable. In FD‐infected plants, decrease in photosynthesis is usually recorded, but deregulation in stomatal control of leaf gas exchange during FD infection and recovery is unknown. We measured the seasonal time course of gas exchange rates in two cultivars (‘Barbera’ and ‘Nebbiolo’) during the term of 1 year when grapevines experienced a water stress and another with no drought, with difference in gas exchange rates in response to FD infection and recovery as assessed by symptom observation and phytoplasma detection through PCR analysis. Chlorophyll fluorescence was also evaluated at the time of maximum symptom severity in ‘Barbera’, the cultivar showing the most severe stress response to FD infection, causing the highest damage in vineyards of north‐western Italy. In FD‐infected plants, net photosynthesis and transpiration gradually decreased during the season, more during the no drought year than during drought. During recovery, healthy (PCR negative) plants infected 2 years before, but not those infected an year before, regained the gas exchange performances to the level as measured before infection. The relationships between stomatal conductance and the residual leaf intercellular CO2 concentration (ci) discriminated healthy versus FD‐infected and recovered plants; at the same ci, FD‐infected leaves had higher non‐photochemical quenching than healthy ones. We conclude that metabolic, not stomatal, leaf gas exchange limitation in FD‐infected and recovered grapevines is the basis of plant response to FD disease. In addition, we also suggest that such response is dependent upon water stress, by showing that water stress superimposes on FD infection in terms of stomatal and metabolic non‐stomatal limitations to carbon assimilation.  相似文献   

18.
In this review, I first address the basics of gas exchange, water‐use efficiency and carbon isotope discrimination in C3 plant canopies. I then present a case study of water‐use efficiency in northern Australian tree species. In general, C3 plants face a trade‐off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water‐use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water‐use efficiency. This may explain why community‐level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water‐use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water‐use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole‐plant water‐use efficiency. Finally, I discuss the role of water‐use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2. In coming decades, increases in plant water‐use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming.  相似文献   

19.
A method for measuring whole plant photosynthesis in Arabidopsis thaliana   总被引:5,自引:0,他引:5  
Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.  相似文献   

20.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号