首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The full‐length nucleotide sequence of the Iranian isolate of Eggplant mottled dwarf virus (EMDV), a phytorhabdovirus, was determined using the random polymerase chain reaction method (rPCR) followed by PCR with specific primers to fill in the gaps. The negative‐sense RNA genome of the Iranian isolate of EMDV contains 13154 nucleotides and seven open‐reading frames (ORFs) in the order 3′‐leader‐N‐X‐P‐Y‐M‐G‐L‐trailer‐5′. These ORFs encode the nucleocapsid, X protein (of unknown function), phosphoprotein, Y protein (putative movement protein), matrix protein, glycoprotein and RNA‐dependent RNA polymerase, respectively. EMDV has a 199 nt 3′ leader RNA and a 151 nt 5′ trailer, and the ORFs are separated by conserved intergenic sequences. Phylogenetic analyses indicate that EMDV is most closely related to Potato yellow dwarf virus, which has a distinctly different geographical distribution.  相似文献   

3.
Interveinal leaf chlorosis, brittleness, limited necrotic flecking or bronzing developed on greenhouse‐grown tobacco and tomato plants at Nanjing Agricultural University from 2010 to 2013. A positive RT‐PCR using a pair of degenerate primers for Crinivirus confirmed the diseased plants were infected with Tomato chlorosis virus (ToCV). The complete RNA 1 genomic sequence of this ToCV isolate was determined; it comprises of 8596 nucleotides with four open reading frames. Phylogenetic analysis of ToCV isolates from diverse geographical regions categorized the ToCV isolates into two main groups. Group one consisted of Chinese, American‐Florida, Greek and Brazilian isolates, while Group two contained only the Spanish isolate. The first group had two subgroups, one of Chinese and American‐Florida isolates, while the other subgroup had Greek and Brazilian isolates. This is the first study of the complete nucleotide sequence of the RNA 1 of ToCV isolated from China.  相似文献   

4.
5.
6.
The occurrence of geranium rust (caused by Puccinia pelargonii‐zonalis) in commercial greenhouses can result in unmarketable plants and significant economic losses. Currently, detection of geranium rust relies solely on scouting for symptoms and signs of the disease. The purpose of this research was to develop a rapid detection assay for P. pelargonii‐zonalis‐infected tissues or urediniospores on greenhouse‐grown geraniums. Two oligonucleotide primers were designed based on internal transcribed spacer sequence data from three isolates of P. pelargonii‐zonalis. The primers amplified a 131‐bp product from genomic DNA from each isolate of P. pelargonii‐zonalis but did not amplify a product from genomic DNA from twelve other rust fungi or four other plant pathogenic fungi. A PCR product was amplified consistently from solutions that contained 1 ng or 100 pg/ml of purified P. pelargonii‐zonalis DNA in conventional PCR and at 1 pg/ml using real‐time PCR. The detection threshold was 102 urediniospores/ml for real‐time PCR and 104 urediniospores/ml for conventional PCR using urediniospores collected by vacuum from sporulating lesions. Puccinia pelargonii‐zonalis DNA was amplified by real‐time PCR from urediniospores washed from a single inoculated leaf, but recovered urediniospores were below detection threshold from one inoculated leaf with 5, 10, 25 and 50 non‐inoculated leaves. Conventional and real‐time PCR did not detect P. pelargonii‐zonalis in infected leaf tissues, presumably due to PCR inhibitors in the geranium leaf tissue. The inhibition of both conventional and real‐time PCR by geranium tissues suggests that a detection assay focusing on urediniospore recovery and microscopic examination with subsequent species verification by PCR may be the most efficient method for assessing the presence of geranium rust in greenhouses.  相似文献   

7.

Aims

The objective of this study was to obtain a phenotypic and genotypic profile of Salmonella enterica including multidrug‐resistant (MDR) isolates from food‐producing animals and clinical isolates, as well as their genetic relatedness in two different States of Mexico (Jalisco and State of Mexico).

Methods and Results

A total of 243 isolates were evaluated in terms of antimicrobial resistance (AMR) and related genes through a disk diffusion method and PCR respectively; we found 16 MDR isolates, all of them harbouring the blaCMY gene but not qnr genes, these isolates represent less than 10% of the collection. The pulsed‐field gel electrophoresis revealed a higher genotypic similitude within isolates of State of Mexico than Jalisco.

Conclusions

A low percentage of Salmonella isolates were resistant to relevant antibiotics in human health, nevertheless, the AMR and involved genes were similar despite the different serovars and origin of the isolates.

Significance and Impact of the Study

This investigation provided an insight of the current status of AMR of Salmonella isolates in two States of Mexico and pinpoint the genes involved in AMR and their epidemiological relationship, the information could help to determine an adequate therapy in human and veterinary medicine.  相似文献   

8.
A species‐specific Polymerase Chain Reaction (sPCR) method was developed to identify and detect isolates of Ralstonia solanacearum, the cause of bacterial wilt disease in chilli. PCR primers for R. solanacearum were identified by alignment of hrpB gene sequences and selection of sequences specific for R. solanacearum at their 3′ ends. The primers were shown to be specific for R. solanacearum, as no PCR product was obtained when genomic DNA from other bacterial species including closely related Ralstonia species, were used as test species. Lone pair of primers (RshrpBF and RshrpBR) was designed using hrpB gene sequence, unique to R. solanacearum which amplified a predicted PCR product of 810 bp from 20 different isolates. Phylogenetic analysis was also attempted to understand the evolutionary divergence of Indian R. solanacearum isolates. Based on phylogenetic analysis, Indian isolates showed homology with the standard reference isolates from other countries but, interestingly, one new isolate showed complete evolutionary divergence by forming an out‐group.  相似文献   

9.
Colletotrichum truncatum was initially described from pepper and has been reported to infect 180 host genera in 55 plant families worldwide. Samples were collected from pepper plants showing typical anthracnose symptoms. Diseased samples after isolation were identified as C. truncatum based on morphological characters and ITS‐rDNA and β‐tubulin sequence data. Intersimple sequence repeat (ISSR) markers were used to estimate genetic diversity in C. truncatum from Malaysia. A set of 3 ISSR primers revealed a total 26 allele from the amplified products. Cluster analysis with UPGMA method clustered C. truncatum isolates into two main groups, which differed with a distance of 0.64. However, the genetic diversity of C. truncatum isolates showed correlation between genetic and geographical distribution, but it failed to reveal a relationship between clustering and pathogenic variability. Phylogenetic analyses discriminated the C. truncatum isolates from other reference Colletotrichum species derived from GenBank. Among the morphological characters, shape, colour of colony and growth rate in culture were partially correlated with the ISSR and phylogenetic grouping. Pathogenicity tests revealed that C. truncatum isolates were causal agents for pepper anthracnose. In the cross‐inoculation assays, C. truncatum isolates were able to produce anthracnose symptoms on tomato, eggplant, onion, lettuce and cabbage. A pathogenicity and cross‐inoculation studies indicated the potential of C. truncatum for virulence and dominancy on plant resistance.  相似文献   

10.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.  相似文献   

11.
In tomato plants, Pepper mild mottle virus (PMMoV) cannot replicate because the tm‐1 protein inhibits RNA replication. The resistance of tomato plants to PMMoV remains durable both in the field and under laboratory conditions. In this study, we constructed several mutant PMMoVs and analysed their abilities to replicate in tomato protoplasts and plants. We found that two mutants, PMMoV‐899R,F976Y and PMMoV‐899R,F976Y,D1098N, were able to replicate in tomato protoplasts, but only PMMoV‐899R,F976Y,D1098N was able to multiply in tomato plants. Further analysis showed that the D1098N mutation of the replication proteins weakened the inhibitory effect of the tm‐1 protein and enhanced the replication efficiency of PMMoV‐899R,F976Y,D1098N. We also observed that the infectivity of the viruses decreased in the order wild‐type PMMoV > PMMoV‐899R,F976Y > PMMoV‐899R,F976Y,D1098N in original host plants, pepper and tobacco plants. On the contrary, the single mutation D1098N abolished PMMoV replication in tobacco protoplasts. On the basis of these observations, it is likely that the deleterious side‐effects of mutations in replication proteins prevent the emergence of PMMoV mutants that can overcome tm‐1‐mediated resistance.  相似文献   

12.
In pepper plants (genus Capsicum), the resistance against Tobamovirus spp. is conferred by L gene alleles. The recently identified L variant L1a can recognize coat proteins (CPs) of Tobacco mild green mosaic virus Japanese strain (TMGMV‐J) and Paprika mild mottle virus Japanese strain (PaMMV‐J), but not of Pepper mild mottle virus (PMMoV), as the elicitor to induce resistance at 24 °C. Interestingly, L1a gene‐mediated resistance against TMGMV‐J, but not PaMMV‐J, is retained at 30 °C. This observation led us to speculate that L1a can discriminate between CPs of TMGMV‐J and PaMMV‐J. In this study, we aimed to determine the region(s) in CP by which L1a distinguishes TMGMV‐J from PaMMV‐J. By using chimeric CPs consisting of TMGMV‐J and PaMMV‐J, we found that the chimeric TMGMV‐J CP, whose residues in the β‐sheet domain were replaced by those of PaMMV‐J, lost its ability to induce L1a gene‐mediated resistance at 30 °C. In contrast, the chimeric PaMMV‐J CP with the β‐sheet domain replaced by TMGMV‐J CP was able to induce L1a gene‐mediated resistance at 30 °C. Furthermore, viral particles were not detected in the leaves inoculated with either chimeric virus. These observations indicated that the amino acids within the β‐sheet domain were involved in both the induction of L1a gene‐mediated resistance and virion formation. Further analyses using chimeric CPs of TMGMV‐J and PMMoV indicated that amino acids within the β‐sheet domain alone were not sufficient for the induction of L1a gene‐mediated resistance by TMGMV‐J CP. These results suggest that multiple regions in Tobamovirus CP are implicated in the induction of L1a gene‐mediated resistance.  相似文献   

13.
Conventional prey‐specific gut content ELISA (enzyme‐linked immunosorbent assay) and PCR (polymerase chain reaction) assays are useful for identifying predators of insect pests in nature. However, these assays are prone to yielding certain types of food chain errors. For instance, it is possible that prey remains can pass through the food chain as the result of a secondary predator (hyperpredator) consuming a primary predator that had previously consumed the pest. If so, the pest‐specific assay will falsely identify the secondary predator as the organism providing the biological control services to the ecosystem. Recently, a generic gut content ELISA was designed to detect protein‐marked prey remains. That assay proved to be less costly, more versatile, and more reliable at detecting primary predation events than a prey‐specific PCR assay. This study examines the chances of obtaining a ‘false positive’ food chain error with the generic ELISA. Data revealed that the ELISA was 100% accurate at detecting protein‐marked Lygus hesperus Knight (Hemiptera: Miridae) remains in the guts of two (true) primary predators, Hippodamia convergens Guérin‐Méneville (Coleoptera: Coccinellidae) and Collops vittatus (Say) (Coleoptera: Melyridae). However, there was also a high frequency (70%) false positives associated with hyperpredators, Zelus renardii Kolenati (Hemiptera: Reduviidae), that consumed a primary predator that possessed protein‐marked L. hesperus in its gut. These findings serve to alert researchers that the generic ELISA, like the PCR assay, is susceptible to food chain errors.  相似文献   

14.
15.
An instance of host range evolution relevant to plant virus disease control is resistance breaking. Resistance breaking can be hindered by across-host fitness trade-offs generated by negative effects of resistance-breaking mutations on the virus fitness in susceptible hosts. Different mutations in pepper mild mottle virus (PMMoV) coat protein result in the breaking in pepper plants of the resistance determined by the L3 resistance allele. Of these, mutation M138N is widespread in PMMoV populations, despite associated fitness penalties in within-host multiplication and survival. The stability of mutation M138N was analysed by serial passaging in L3 resistant plants. Appearance on passaging of necrotic local lesions (NLL), indicating an effective L3 resistance, showed reversion to nonresistance-breaking phenotypes was common. Most revertant genotypes had the mutation N138K, which affects the properties of the virus particle, introducing a penalty of reversion. Hence, the costs of reversion may determine the evolution of resistance-breaking in addition to resistance-breaking costs. The genetic diversity of the virus population in NLL was much higher than in systemically infected tissues, and included mutations reported to break L3 resistance other than M138N. Infectivity assays on pepper genotypes with different L alleles showed high phenotypic diversity in respect to L alleles in NLL, including phenotypes not reported in nature. Thus, high diversity at NLL may potentiate the appearance of genotypes that enable the colonization of new host genotypes or species. Collectively, the results of this study contribute to better understanding the evolutionary dynamics of resistance breaking and host-range expansions.  相似文献   

16.
17.
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is an important disease of tomato. Pathogenicity and vegetative compatibility tests, although reliable, are laborious for the identification of FOL isolates and cannot efficiently quantify population densities of FOL in the soil. The objective of this study was to develop a rapid, sensitive and quantitative real‐time polymerase chain reaction (PCR) assay for detecting and quantifying FOL in soil. An inexpensive and relatively simple method for soil DNA extraction and purification was developed based on bead‐beating and a silica‐based DNA‐binding method. A TaqMan probe and PCR primers were designed using the DNA sequence of the species‐specific virulence gene SIX1, which is only present in isolates of FOL, not in isolates of other formae speciales or non‐pathogenic isolates of F. oxysporum. The real‐time PCR assay successfully amplified isolates of three races of FOL used in this study and quantified FOL DNA in soils, with a detection limit of 0.44 pg of genomic DNA of FOL in 20 μl of the real‐time PCR. A spiking test performed by adding different concentrations of conidia to soil showed a significant linear relationship between the amount of genomic DNA of FOL detected by the real‐time PCR assay and the concentration of conidia added. In addition, the real‐time PCR assay revealed a significant quadratic regression for a glasshouse experiment between disease severity and DNA concentration of FOL. The soil DNA extraction method and real‐time PCR assay developed in this study could be used to determine population densities of FOL in soil, develop threshold models to predict Fusarium wilt severity, identify high‐risk fields and measure the impact of cultural practices on FOL populations in soils.  相似文献   

18.
Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis‐related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT‐triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease‐inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2O2 and significant induction of some defense‐response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT‐triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2O2 accumulation, cell‐death induction, and defense‐response gene expression were distinctly reduced in CaPR4c‐silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.  相似文献   

19.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   

20.
The alignment of the complete genomes of genetic variants of Grapevine leafroll‐associated virus 3 (GLRaV‐3) representing phylogenetic groups I, II, III and VI revealed numerous regions with exceptionally high divergence between group I to III and group VI variants. Oligonucleotide primers universal for all the above groups of the virus were designed in conserved short stretches of sequences flanking the divergent regions in the helicase (Hel) and RNA‐dependent RNA polymerase (RdRP) domains of the replicase gene and the divergent copy of the capsid protein (dCP) gene. Cloning and sequencing of the 549‐bp RT‐PCR amplicon of the helicase domain from grapevine cv. Shiraz lead to the detection of a variant of GLRaV‐3, which shared only 69.6–74.1% nt similarity with other variants, including the recently reported, new, highly divergent variant, isolate 139. This was confirmed by the results of the analysis of 517‐bp amplicon of the HSP70 gene of GLRaV‐3 generated in RT‐nested PCR based on degenerate primers for the simultaneous amplification of members of the Closteroviridae family designed by Dovas and Katis (J Virol Methods, 109, 2003, 217). In this genomic region, the variant shares 72.3–78.7% nt similarity with other variants of GLRaV‐3. This previously unreported, new, highly divergent variant was provisionally named GTG10. From the alignment of the HSP70 sequences primers for the specific RT‐nested PCR amplification of the variant GTG10 and members of group VI, and specific simultaneous amplification of variants of groups I, II and III, were designed. The results obtained from brief testing of various grapevines using all these primers suggest a relatively limited presence of GTG10 variant in vineyards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号