首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrrolizidine alkaloid (PA) clivorine, isolated from traditional Chinese medicinal plant Ligularia hodgsonii Hook, has been shown to induce apoptosis in hepatocytes via mitochondrial‐mediated apoptotic pathway in our previous research. The present study was designed to observe the protection of N‐acetyl‐cysteine (NAC) on clivorine‐induced hepatocytes apoptosis. Our results showed that 5 mM NAC significantly reversed clivorine‐induced cytotoxicity via MTT and Trypan Blue staining assay. DNA apoptotic fragmentation analysis and Western‐blot results showed that NAC decreased clivorine‐induced apoptotic DNA ladder and caspase‐3 activation. Further results showed that NAC inhibited clivorine‐induced Bcl‐xL decrease, mitochondrial cytochrome c release and caspase‐9 activation. Intracellular glutathione (GSH) is an important ubiquitous redox‐active reducing sulfhydryl (? SH) tripeptide, and our results showed that clivorine (50 µM) decreased cellular GSH amounts and the ratio of GSH/GSSG in the time‐dependent manner, while 5 mM NAC obviously reversed this depletion. Further results showed that GSH synthesis inhibitor BSO augmented clivorine‐induced cytotoxicity, while exogenous GSH reversed its cytotoxicity on hepatocytes. Clivorine (50 µM) significantly induced cellular reactive oxygen species (ROS) generation. Further results showed that 50 µM Clivorine decreased glutathione peroxidase (GPx) activity and increased glutathione S transferase (GST) activity, which are both GSH‐related antioxidant enzymes. Thioredoxin‐1 (Trx) is also a ubiquitous redox‐active reducing (? SH) protein, and clivorine (50 µM) decreased cellular expression of Trx in a time‐dependent manner, while 5 mM NAC reversed this decrease. Taken together, our results demonstrate that the protection of NAC is major via maintaining cellular reduced environment and thus prevents clivorine‐induced mitochondrial‐mediated hepatocytes apoptosis. J. Cell. Biochem. 108: 424–432, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Exposure of the skin to certain phenols or catechols such as 4‐tert‐butylphenol (TBP) and 4‐tert‐butylcatechol (TBC) may cause leukoderma. These substances are used in the polymer industry and numerous cases have been reported. Several theories of the mechanism for chemical leukoderma have been suggested. In the present study, TBP and TBC are shown to be oxidised by tyrosinase. The oxidation of TBC yields a quinone that is further investigated on its reactions with cysteine or glutathione (GSH). The products formed are isolated and identified by mass spectrometry and nuclear magnetic resonance as being 4‐tert‐butyl‐6‐S‐cysteinylcatechol (cys‐TBC) and 4‐tert‐butyl‐6‐S‐glutathionylcatechol (GS‐TBC). The reactive quinone is a strongly electrophilic substance that rapidly reacts with GSH. A depletion of the GSH defence system may give conditions where the quinone lives long enough to effect its toxic properties. The influence of the reactive tert‐butylquinone on enzymatic activities is demonstrated by the inhibition of glyceraldehyde‐3‐phosphate dehydrogenase.  相似文献   

3.
The tripeptide antioxidant glutathione (γ-l-glutamyl-l-cysteinyl-glycine; GSH) essentially contributes to thiol-disulphide conversions, which are involved in the control of seed development, germination, and seedling establishment. However, the relative contribution of GSH metabolism in different seed structures is not fully understood. We studied the GSH/glutathione disulphide (GSSG) redox couple and associated low-molecular-weight (LMW) thiols and disulphides related to GSH metabolism in bread wheat (Triticum aestivum L.) seeds, focussing on redox changes in the embryo and endosperm during germination. In dry seeds, GSH was the predominant LMW thiol and, 15?h after the onset of imbibition, embryos of non-germinated seeds contained 12 times more LMW thiols than the endosperm. In germinated seeds, the embryo contained 17 and 11 times more LMW thiols than the endosperm after 15 and 48?h, respectively. This resulted in the embryo having significantly more reducing half-cell reduction potentials of GSH/GSSG and cysteine (Cys)/cystine (CySS) redox couples (EGSSG/2GSH and ECySS/2Cys, respectively). Upon seed germination and early seedling growth, Cys and CySS concentrations significantly increased in both embryo and endosperm, progressively contributing to the cellular LMW thiol-disulphide redox environment (Ethiol-disulphide). The changes in ECySS/2Cys could be related to the mobilisation of storage proteins in the endosperm during early seedling growth. We suggest that EGSSG/2GSH and ECySS/2Cys can be used as markers of the physiological and developmental stage of embryo and endosperm. We also present a model of interaction between LMW thiols and disulphides with hydrogen peroxide (H2O2) in redox regulation of bread wheat germination and early seedling growth.  相似文献   

4.
The influence of the glutathione C60 derivative on the cytotoxicity of a highly reactive free radical NO (nitric oxide) has been investigated. Consistent with its cytoprotective abilities, the derivative scavenges ROS (reactive oxygen species) and RNS (reactive nitrogen species) both in vitro and under cell‐free conditions. Moreover, the glutathione C60 derivative protected PC12 cells from the cytotoxic effect of the NO‐releasing compound, SNP (sodium nitroprusside). Addition of glutathione C60 derivative alone did not induce apoptosis and necrosis. The results suggest that the glutathione C60 derivative has the potential to prevent NO‐mediated cell death without evident toxicity.  相似文献   

5.
Lipid peroxide‐derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage‐inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR‐OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild‐type under Al stress. Exogenous application of 4‐hydroxy‐2‐nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild‐type plants. GR‐OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H2O2 due to Al stress in GR‐OE plants was lower by 26% than in wild‐type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)‐2‐heptenal and n‐octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance.  相似文献   

6.
7.
Nitric oxide (NO) plays a vital role in mammalian host defense through a variety of mechanisms. In particular, NO can oxidize to form reactive nitrogen species or interact with protein thiols and metal centers, blocking essential microbial processes. S-nitrosoglutathione (GSNO), a potent NO donor formed by the interaction of NO with intracellular glutathione (GSH), is a major factor in this pathway and is considered one of the strongest naturally occurring nitrosating agent. We previously described the broad-spectrum antimicrobial activity of a nanoparticulate platform capable of controlled and sustained release of NO (NO-np). Interestingly, in vivo efficacy of the NO-np surpassed in vitro data generated. We hypothesized that the enhanced activity was in part achieved via the interaction between the generated NO and available GSH, forming GSNO. In the current study, we investigated the efficiency of NO-np to form GSNO in the presence of GSH was evaluated, and assessed the antimicrobial activity of the formed GSNO against methicillin resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. When GSH was combined with NO-np, GSNO was rapidly produced and significant concentrations of GSNO were maintained for >24h. The GSNO generated was more effective compared to NO-np alone against all bacterial strains examined, with P. aeruginosa being the most sensitive and K. pneumoniae the most resistant. We conclude that the combination of NO-np with GSH is an effective means of generating GSNO, and presents a novel approach to potent antimicrobial therapy.  相似文献   

8.
Ozone produces reactive oxygen species and induces the synthesis of phytohormones, including ethylene and salicylic acid. These phytohormones act as signal molecules that enhance cell death in response to ozone exposure. However, some studies have shown that ethylene and salicylic acid can instead decrease the magnitude of ozone‐induced cell death. Therefore, we studied the defensive roles of ethylene and salicylic acid against ozone. Unlike the wild‐type, Col‐0, Arabidopsis mutants deficient in ethylene signaling (ein2) or salicylic acid biosynthesis (sid2) generated high levels of superoxide and exhibited visible leaf injury, indicating that ethylene and salicylic acid can reduce ozone damage. Macroarray analysis suggested that the ethylene and salicylic acid defects influenced glutathione (GSH) metabolism. Increases in the reduced form of GSH occurred in Col‐0 6 h after ozone exposure, but little GSH was detected in ein2 and sid2 mutants, suggesting that GSH levels were affected by ethylene or salicylic acid signaling. We performed gene expression analysis by real‐time polymerase chain reaction using genes involved in GSH metabolism. Induction of γ‐glutamylcysteine synthetase (GSH1), glutathione synthetase (GSH2), and glutathione reductase 1 (GR1) expression occurred normally in Col‐0, but at much lower levels in ein2 and sid2. Enzymatic activities of GSH1 and GSH2 in ein2 and sid2 were significantly lower than in Col‐0. Moreover, ozone‐induced leaf damage observed in ein2 and sid2 was mitigated by artificial elevation of GSH content. Our results suggest that ethylene and salicylic acid protect against ozone‐induced leaf injury by increasing de novo biosynthesis of GSH.  相似文献   

9.
10.

Nitric oxide (NO), a signaling molecule with diverse physiological functions, improves immunity of the plant against different environmental stresses. Heavy metal stress-induced structural and functional damages in cells are common consequences. Seed germination and seedlings development are crucial phases in the life cycle of a plant. The present experiment was designed to investigate how NO suppresses hexavalent chromium Cr(VI)-provoked impairment in the key processes during seed germination and seedlings development of tomato. This study reports that Cr(VI) stress significantly impaired seed germination attributes and the activity of hydrolyzing enzymes, such as α-amylase (α-A) and protease (Pr). However, exogenous NO donor sodium nitroprusside substantially improved seed germination parameters and upregulation of α-A and Pr. Furthermore, NO improved the content of nitrogen (N), NO, and proline (Pro), and modulated the activity of enzymes involved in Pro and N-assimilation. Under Cr(VI) toxicity conditions, NO improved the content of metal ligation compounds (non-protein thiols and total thiols), ascorbate and glutathione (GSH), and maintained higher content of GSH in glutathione pool (GSH:GSSG) and suppressed the formation of 4-hydroxy-2-nonenal and protein carbonylation, and electrolyte leakage. It may be concluded that NO improved the activity of hydrolyzing and Pro and N-metabolism enzymes. Application of NO also enhanced non-enzymatic antioxidants, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity under Cr(VI) toxicity conditions, thereby improved enhanced seed germination and seedlings vigor.

  相似文献   

11.
In the present investigation, we initially evaluated the in vitro effect of N‐acetylarginine on thiobarbituric acid‐reactive substances (TBA‐RS), total sulfhydryl content and on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px) in the blood, kidney and liver of rats. Results showed that N‐acetylarginine, at a concentration of 5.0 μM, decreased the activity of CAT in erythrocytes, enhanced TBA‐RS in the renal cortex, decreased CAT and SOD activities in the renal medulla and decreased CAT and increased SOD and GSH‐Px activities in the liver of 60‐day‐old rats. Furthermore, we tested the influence of the antioxidants, trolox and ascorbic acid, as well as of the Nω‐nitro‐L ‐arginine methyl ester (L‐NAME) on the effects elicited by N‐acetylarginine on the parameters tested. Antioxidants and L‐NAME prevented most of the alterations caused by N‐acetylarginine on the oxidative stress parameters evaluated. Data indicate that oxidative stress induction is probably mediated by the generation of NO and/or ONOO? and other free radicals because L‐NAME and antioxidants prevented the effects caused by N‐acetylarginine in the blood, renal tissues and liver of rats. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by N‐acetylarginine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
RS‐4‐(4‐Hydroxyphenyl)‐2‐butanol (rhododendrol, RD), a skin‐whitening agent, is known to induce leukoderma in some people. To explore the mechanism underlying this effect, we previously showed that the oxidation of RD with mushroom or human tyrosinase produces cytotoxic quinone oxidation products. We then examined the metabolism of RD in B16F1 melanoma cells in vitro and detected RD‐pheomelanin and RD‐quinone bound to non‐protein and protein thiols. In this study, we examined the changes in glutathione (GSH) and cysteine in B16 cells exposed to RD for up to 24 h. We find that the levels of cysteine, but not those of GSH, decrease during 0.5‐ to 3‐h exposure, due to oxidation to cystine. This pro‐oxidant activity was then examined using synthetic melanins. Indeed, we find that RD‐eumelanin exerts a pro‐oxidant activity as potent as Dopa‐pheomelanin. GSH, cysteine, ascorbic acid, and NADH were oxidized by RD‐eumelanin with a concomitant production of H2O2. We propose that RD‐eumelanin induces cytotoxicity through its potent pro‐oxidant activity.  相似文献   

13.
It has been suggested that reactive oxygen species (ROS) plays an important role in radio contrast media (RCM)‐induced ischemia reperfusion tissue injury although antioxidants may have protective effects on the injury. We investigated the effects of erdosteine as an antioxidant agent on RCM‐induced liver toxicity in rats by evaluation of lipid peroxidation (as TBARS), catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and glutathione peroxidase (GSH‐Px) values and histological evaluation. Twenty‐one rats were equally divided into three groups as follows: control, RCM, and RCM plus erdosteine. RCM was intraperitoneally administered for 1 day. Erdosteine was administered orally for 2 days after RCM administration. Liver samples were taken from the rats and they homogenized in a motor‐driven tissue homogenizer. TBARS levels were significantly (p < 0.005) higher in RCM group than in control although SOD activities significantly (p < 0.05) decreased in RCM group. TBARS levels were lower in RCM plus erdosteine group than in control although SOD activity and GSH level increased (p < 0.05) in liver as compared to RCM alone. Erdosteine showed also histopathological protection (p < 0.0001) against RCM induced hepatotoxicity. GSH‐Px and CAT activities were not statistically changed by the erdosteine. According to our results, it can be concluded that radiocontrast media can induce oxidative stress in liver as suggested by previous studies. Erdosteine seems to be protective agent on the radiocontrast media‐induced liver toxicity by inhibiting the production of ROS via the enzymatic antioxidant system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
  • Aquatic macrophytes are potentially useful for phytoremediation programmes in environments contaminated by arsenic (As). Biochemical and physiological modification analyses in different plant parts are important to understand As tolerance mechanisms.
  • The objective was to evaluate glutathione metabolism in leaves and roots of Eichhornia crassipes (Mart.) Solms treated to As. Specimens of E. crassipes were cultured for 3 days in Clark's nutrient solution containing 7 μm As. The enzymes ATP sulphurylase (ATPS), glutathione reductase (GR), glutathione peroxidase (GSH‐Px), glutathione sulphotransferase (GST) and γ‐glutamylcysteine synthetase (γ‐ECS) activity, glutathione content, total protein and non‐protein thiols were evaluated.
  • The ATPS activity increased in roots. GR activity in leaves and GSH‐Px in roots were lower. GST activity was higher in roots and lower in leaves, and γ‐ECS activity was higher in leaves. Glutathione levels were lower, total thiol levels were higher and non‐protein levels did not change in E. crassipes leaves and roots. Exposure to As increased enzyme activity involved with sulphur metabolism, such as ATPS. Higher GR activity and lower GSH‐Px indicate increased glutathione conjugation to As due to increased GSH availability. The higher GST activity indicates its participation in As detoxification and accumulation through As GSH conjugation. Changes in glutathione and thiol levels suggest high phytochelatin synthesis.
  • In conclusion, the increments in ATPS, GR, GST and γ‐ECS activity indicate that these enzymes are involved in GSH metabolism and are part of the E. crassipes As detoxification mechanism.
  相似文献   

15.
16.
17.
Arsenic‐based compounds are paradoxically both poisons and drugs. Glutathione transferase (GSTP1‐1) is a major factor in resistance to such drugs. Here we describe using crystallography, X‐ray absorption spectroscopy, mutagenesis, mass spectrometry, and kinetic studies how GSTP1‐1 recognizes the drug phenylarsine oxide (PAO). In conditions of cellular stress where glutathione (GSH) levels are low, PAO crosslinks C47 to C101 of the opposing monomer, a distance of 19.9 Å, and causes a dramatic widening of the dimer interface by approximately 10 Å. The GSH conjugate of PAO, which forms rapidly in cancerous cells, is a potent inhibitor (Ki = 90 nM) and binds as a di‐GSH complex in the active site forming part of a continuous network of interactions from one active site to the other. In summary, GSTP1‐1 can detoxify arsenic‐based drugs by sequestration at the active site and at the dimer interface, in situations where there is a plentiful supply of GSH, and at the reactive cysteines in conditions of low GSH.  相似文献   

18.
Nicotinamide N‐methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH‐SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT‐expressing SH‐Y5Y cells. The expression of uncoupling protein‐2 messenger RNA and protein were significantly increased in NNMT‐expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT‐expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT‐expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8‐isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.  相似文献   

19.
Evidence demonstrates that M1 macrophage polarization promotes inflammatory disease. Here, we discovered that (R)‐salbutamol, a β2 receptor agonist, inhibits and reprograms the cellular metabolism of RAW264.7 macrophages. (R)‐salbutamol significantly inhibited LPS‐induced M1 macrophage polarization and downregulated expressions of typical M1 macrophage cytokines, including monocyte chemotactic protein‐1 (MCP‐1), interleukin‐1β (IL‐1β) and tumour necrosis factor α (TNF‐α). Also, (R)‐salbutamol significantly decreased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and reactive oxygen species (ROS), while increasing the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio. In contrast, (S)‐salbutamol increased the production of NO and ROS. Bioenergetic profiles showed that (R)‐salbutamol significantly reduced aerobic glycolysis and enhanced mitochondrial respiration. Untargeted metabolomics analysis demonstrated that (R)‐salbutamol modulated metabolic pathways, of which three metabolic pathways, namely, (a) phenylalanine metabolism, (b) the pentose phosphate pathway and (c) glycerophospholipid metabolism were the most noticeably impacted pathways. The effects of (R)‐salbutamol on M1 polarization were inhibited by a specific β2 receptor antagonist, ICI‐118551. These findings demonstrated that (R)‐salbutamol inhibits the M1 phenotype by downregulating aerobic glycolysis and glycerophospholipid metabolism, which may propose (R)‐salbutamol as the major pharmacologically active component of racemic salbutamol for the treatment of inflammatory diseases and highlight the medicinal value of (R)‐salbutamol.  相似文献   

20.
How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC‐driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl‐tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC‐driven tumors. We find that fewer glutamine‐derived carbons are incorporated into GSH in tumor tissue relative to non‐tumor tissue. Expression of GCLC, the rate‐limiting enzyme of GSH synthesis, is attenuated by the MYC‐induced microRNA miR‐18a. Inhibition of miR‐18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC‐driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC‐dependent attenuation of GCLC by miR‐18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号