首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the earliest events in the process of leaf senescence is dismantling of chloroplasts. Mesophyll cell chloroplasts from rosette leaves were studied in Arabidopsis thaliana undergoing natural senescence. The number of chloroplasts decreased by only 17% in fully yellow leaves, and chloroplasts were found to undergo progressive photosynthetic and ultrastructural changes as senescence proceeded. In ultrastructural studies, an intact tonoplast could not be visualized, thus, a 35S-GFP::δ-TIP line with a GFP-labeled tonoplast was used to demonstrate that chloroplasts remain outside of the tonoplast even at late stages of senescence. Chloroplast DNA was measured by real-time PCR at four different chloroplast loci, and a fourfold decrease in chloroplast DNA per chloroplast was noted in yellow senescent leaves when compared to green leaves from plants of the same age. Although chloroplast DNA did decrease, the chloroplast/nuclear gene copy ratio was still 31:1 in yellow leaves. Interestingly, mRNA levels for the four loci differed: psbA and ndhB mRNAs remained abundant late into senescence, while rpoC1 and rbcL mRNAs decreased in parallel to chloroplast DNA. Together, these data demonstrate that, during senescence, chloroplasts remain outside of the vacuole as distinct organelles while the thylakoid membranes are dismantled internally. As thylakoids were dismantled, Rubisco large subunit, Lhcb1, and chloroplast DNA levels declined, but variable levels of mRNA persisted.  相似文献   

2.
3.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

4.
Transcriptome of Arabidopsis leaf senescence   总被引:21,自引:0,他引:21  
  相似文献   

5.
6.
Leaf senescence is a developmentally regulated process that contributes to nutrient redistribution during reproductive growth and finally leads to tissue death. Manipulating leaf senescence through breeding or genetic engineering may help to improve important agronomic traits, such as crop yield and the storage life of harvested organs. Here, we studied natural variations in the regulation of plant senescence among 16 Arabidopsis thaliana accessions. Chlorophyll content and the proportion of yellow leaves were used as indicator parameters to determine leaf and plant senescence respectively. Our study indicated significant genotype effects on the onset and development of senescence. We selected three late- and five early-senescence accessions for further physiological studies. The relationship between leaf and plant senescence was accession-dependent. There was a significant correlation between plant senescence and the total number of leaves, siliques and plant bolting age. We monitored expression of two senescence marker genes, SAG12 and WRKY53 , to evaluate progression of senescence. Our data revealed that chlorophyll content does not fully reflect leaf age, because even fully green leaves had already commenced senescence at the molecular level. Integrating senescence parameters, such as the proportion of senescent leaves, at the whole plant level provided a better indication of the molecular status of the plant than single leaf senescence parameters.  相似文献   

7.
《Autophagy》2013,9(8):1466-1467
Autophagy is essential for nutrient recycling and intracellular housekeeping in plants by removing unwanted cytoplasmic constituents, aggregated polypeptides, and damaged organelles. The autophagy-related (ATG)1-ATG13 kinase complex is an upstream regulator that integrates metabolic and environmental cues into a coherent autophagic response directed by other ATG components. Our recent studies with Arabidopsis thaliana revealed that ATG11, an accessory protein of the ATG1-ATG13 complex, acts as a scaffold that connects the complex to autophagic membranes. We showed that ATG11 encourages proper behavior of the ATG1-ATG13 complex and faithful delivery of autophagic vesicles to the vacuole, likely through its interaction with ATG8. In addition, we demonstrated that Arabidopsis mitochondria are degraded during senescence via an autophagic route that requires ATG11 and other ATG components. Together, ATG11 appears to be an important modulator of the ATG1-ATG13 complex and a multifunctional scaffold required for bulk autophagy and the selective clearance of mitochondria.  相似文献   

8.
9.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   

10.
11.
The crinkled leaves8 (cls8) mutant of Arabidopsis thaliana displays a developmental phenotype of abnormal leaf and flower morphology, reduced root growth and bleached leaf sections. Map-based cloning identified the mutation as being within the gene encoding the large subunit of ribonucleotide reductase (RNR1), the enzyme that catalyses the rate-limiting step in the production of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Levels of dTTP and dATP were significantly reduced in cls8. Two further mutant cls8 alleles and cls8::RNAi plants show similar or more severe phenotypes. The cls8-1 mutant has fewer copies of the chloroplast genome, and fewer, larger chloroplasts than wild-type plants. The ultrastructure of the chloroplast, however, appears normal in cls8-1 leaves. We present evidence that, under conditions of limited dNTP supply, the inhibition of chloroplast DNA replication may be the primary factor in inducing aberrant growth.  相似文献   

12.
13.
Abstract Although the evolutionary importance of spontaneous mutation is evident, its contribution to the evolution of ecological specificity remains unclear, because the environmental sensitivity of effects of new mutations has received little empirical attention. To address this issue, we report a greenhouse in which we grew plants from 20 mutation-accumulation (MA) lines, advanced by selfing and single-seed descent from a single common founder to generation 17, as well as plants from five lines representing the founder, in high and low nutrient conditions. We examined 11 traits throughout life history, including germination, survivorship, bolting date, flowering date, leaf number, leaf size, early and late height, mean fruit size, total seed weight, and reproductive biomass. Comparison of trait means between the two generations did not support the commonly held view that new mutations affecting fitness in these MA lines are strongly biased toward deleterious effects. We detected significant variance among MA lines for one fitness component, mean fruit size, but we did not detect a significant contribution of mutations accumulated in these MA lines to genotype by environment interaction (GEI). These results suggest that other evolutionary mechanisms play a more important role than spontaneous mutation alone in establishing the GEI found for wild collections and lab accessions of Arabidopsis thaliana in previous studies.  相似文献   

14.
We have characterized the structure and expression of a senescence-associated gene (sen1) of Arabidopsis thaliana. The protein-coding region of the gene consists of 5 exons encoding 182 amino acids. The encoded peptide shows noticeable similarity to the bacterial sulfide dehydrogenase and 81% identity to the peptide encoded by the radish din1 gene. The 5-upstream region contains sequence motifs resembling the heat-shock- and ABA-responsive elements and the TCA motif conserved among stress-inducible genes. Examination of the expression patterns of the sen1 gene under various senescing conditions along with measurements of photochemical efficiency and of chlorophyll content revealed that the sen1 gene expression is associated with Arabidopsis leaf senescence. During the normal growth phase, the gene is strongly induced in leaves at 25 days after germination when inflorescence stems are 2–3 cm high, and then the mRNA level is maintained at a comparable level in naturally senescing leaves. In addition, dark-induced senescence of detached leaves or of leaves in planta resulted in a high-level induction of the gene. Expression of the sen1 gene was also strongly induced in leaves subjected to senescence by 0.1 mM abscisic acid or 1 mM ethephon treatment. The induced expression of the gene by dark treatment was not significantly repressed by treatment with 0.1 mM cytokinin or 50 mM CaCl2 which delayed loss of chlorophyll but not that of photochemical efficiency.  相似文献   

15.
DEGP家族蛋白酶广泛分布于原核生物和真核生物细胞中。在拟南芥中有16个DEGP类似的蛋白酶,根据蛋白质组学数据,其中有4个定位于叶绿体中,分别命名为DEG1、DEG2、DEG5和DEG8。结合生物化学和分子生物学等研究手段对拟南芥叶绿体中的DEGP蛋白酶进行了分析,现有的研究初步证明了这些蛋白酶参与光系统II(PSII)复合物反应中心D1蛋白的降解,从而在PSII复合物的修复循环和功能维护中起重要作用。该文概述了拟南芥叶绿体中DEG蛋白酶的结构和功能的最新研究进展。  相似文献   

16.
Complete structure of the chloroplast genome of Arabidopsis thaliana.   总被引:7,自引:0,他引:7  
The complete nucleotide sequence of the chloroplast genome of Arabidopsis thaliana has been determined. The genome as a circular DNA composed of 154,478 bp containing a pair of inverted repeats of 26,264 bp, which are separated by small and large single copy regions of 17,780 bp and 84,170 bp, respectively. A total of 87 potential protein-coding genes including 8 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acid species were assigned to the genome on the basis of similarity to the chloroplast genes previously reported for other species. The translated amino acid sequences from respective potential protein-coding genes showed 63.9% to 100% sequence similarity to those of the corresponding genes in the chloroplast genome of Nicotiana tabacum, indicating the occurrence of significant diversity in the chloroplast genes between two dicot plants. The sequence data and gene information are available on the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

17.
We present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N- and C-terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub-cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub-cellular localization signal predictions. This large-scale analysis illustrates the power of top-down proteoform identification of post-translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.  相似文献   

18.
Molecular analysis of natural leaf senescence in Arabidopsis thaliana   总被引:27,自引:0,他引:27  
Using artificial canopies, several authors have shown that horizontally propagated and overall propagated radiation beneath the canopy differ substantially in spectral distribution in the red (R) and far red (FR) wavelengths. Given the lack of information about light quality under real crop canopies, the R:FR ratio of vertical and horizontal radiation beneath field-grown maize, soybean and wheat was monitored until leaf area index (LAI) reached 4, 2.5 and 6.9, respectively.
A Li-Cor 1800 spectroradiometer with a remote cosine receptor fitted with a quartz fibre-optic light-guide was used. To isolate radiation coming from a given direction, a black coated tube was fitted to the cosine receptor. The viewing angle was 15°. In open conditions, the values of R:FR from the upper hemisphere were between 1.07 and 1.20. For vertically and horizontally-propagated light, average values were 1.22 and 0.75 respectively.
Beneath the canopy, both R:FR and photosynthetic photon flux density (PPFD) from the entire upper hemisphere decreased in relation to LAI and crop height. R:FR of the horizontal component were found to be generally much lower than the vertical, which decreased significantly only in the later measurements.
The lowest R:FR values were recorded under wheat and soybean canopies. Even the very low LAIs present at early development stages were enough to cause a sharp decrease of R:FR in the horizontal fluxes. Referring to the entire upper hemisphere, PPFD transmittance and R:FR as a percentage of the external references appeared well correlated.  相似文献   

19.
20.
Sphingolipids, a class of bioactive lipids found in cell membranes, can modulate the biophysical properties of the membranes and play a critical role in signal transduction. Sphingolipids are involved in autophagy in humans and yeast, but their role in autophagy in plants is not well understood. In this study, we reported that the AtACER, an alkaline ceramidase that hydrolyses ceramide to long‐chain base (LCB), functions in autophagy process in Arabidopsis. Our empirical data showed that the loss of AtACER inhibited autophagy, and its overexpression promoted autophagy under nutrient, salinity, and oxidative stresses. Interestingly, nitrogen deprivation significantly affected the sphingolipid's profile in Arabidopsis thaliana, especially the LCBs. Furthermore, the exogenous application of LCBs also induced autophagy. Our findings revealed a novel function of AtACER, where it was found to involve in the autophagy process, thus, playing a crucial role in the maintenance of a dynamic loop between sphingolipids and autophagy for cellular homeostasis under various environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号