首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Myc proteins are known to have an important function in stem cell maintenance. As Myc has been shown earlier to regulate microRNAs (miRNAs) involved in proliferation, we sought to determine whether c‐Myc also affects embryonic stem (ES) cell maintenance and differentiation through miRNAs. Using a quantitative primer‐extension PCR assay we identified miRNAs, including, miR‐141, miR‐200, and miR‐429 whose expression is regulated by c‐Myc in ES cells, but not in the differentiated and tumourigenic derivatives of ES cells. Chromatin immunoprecipitation analyses indicate that in ES cells c‐Myc binds proximal to genomic regions encoding the induced miRNAs. We used expression profiling and seed homology to identify genes specifically downregulated both by these miRNAs and by c‐Myc. We further show that the introduction of c‐Myc‐induced miRNAs into murine ES cells significantly attenuates the downregulation of pluripotency markers on induction of differentiation after withdrawal of the ES cell maintenance factor LIF. In contrast, knockdown of the endogenous miRNAs accelerate differentiation. Our data show that in ES cells c‐Myc acts, in part, through a subset of miRNAs to attenuate differentiation.  相似文献   

4.
Human embryonic stem cells express a unique set of microRNAs   总被引:41,自引:0,他引:41  
  相似文献   

5.
Type 1 diabetes is an autoimmune destruction of pancreatic islet beta cell disease, making it important to find a new alternative source of the islet beta cells to replace the damaged cells. hES (human embryonic stem) cells possess unlimited self‐renewal and pluripotency and thus have the potential to provide an unlimited supply of different cell types for tissue replacement. The hES‐T3 cells with normal female karyotype were first differentiated into EBs (embryoid bodies) and then induced to generate the T3pi (pancreatic islet‐like cell clusters derived from T3 cells), which expressed pancreatic islet cell‐specific markers of insulin, glucagon and somatostatin. The expression profiles of microRNAs and mRNAs from the T3pi were analysed and compared with those of undifferentiated hES‐T3 cells and differentiated EBs. MicroRNAs negatively regulate the expression of protein‐coding mRNAs. The T3pi showed very high expression of microRNAs, miR‐186, miR‐199a and miR‐339, which down‐regulated the expression of LIN28, PRDM1, CALB1, GCNT2, RBM47, PLEKHH1, RBPMS2 and PAK6. Therefore, these microRNAs and their target genes are very likely to play important regulatory roles in the development of pancreas and/or differentiation of islet cells, and they may be manipulated to increase the proportion of beta cells and insulin synthesis in the differentiated T3pi for cell therapy of type I diabetics.  相似文献   

6.
It is becoming increasingly clear that mesenchymal stem cell (MSC) differentiation is regulated by mechanical signals. Mechanical forces generated intrinsically within the cell in response to its extracellular environment, and extrinsic mechanical signals imposed upon the cell by the extracellular environment, play a central role in determining MSC fate. This article reviews chondrogenesis and osteogenesis during skeletogenesis, and then considers the role of mechanics in regulating limb development and regenerative events such as fracture repair. However, observing skeletal changes under altered loading conditions can only partially explain the role of mechanics in controlling MSC differentiation. Increasingly, understanding how epigenetic factors, such as the mechanical environment, regulate stem cell fate is undertaken using tightly controlled in vitro models. Factors such as bioengineered surfaces, substrates, and bioreactor systems are used to control the mechanical forces imposed upon, and generated within, MSCs. From these studies, a clearer picture of how osteogenesis and chondrogenesis of MSCs is regulated by mechanical signals is beginning to emerge. Understanding the response of MSCs to such regulatory factors is a key step towards understanding their role in development, disease and regeneration. Birth Defects Research (Part C) 90:75–85, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
Cartilage formation in the embryonic limb is presaged by a cellular condensation phase that is mediated by both cell-cell and cell-matrix interactions. N-Cadherin, a Ca(2+)-dependent cell-cell adhesion molecule, is expressed at higher levels in the condensing mesenchyme, followed by down-regulation upon chondrogenic differentiation, strongly suggesting a functional role in the cellular condensation process. To further examine the role of N-cadherin, we have generated expression constructs of wild type and two deletion mutants (extracellular and intracellular) of N-cadherin in the avian replication-competent, RCAS retrovirus, and transfected primary chick limb mesenchymal cell cultures with these constructs. The effects of altered, sustained expression of N-cadherin and its mutant forms on cellular condensation, on the basis of peanut agglutinin (DNA) staining, and chondrogenesis, based on expression of chondrocyte phenotypic markers, were characterized. Cellular condensation was relatively unchanged in cultures overexpressing wild type N-cadherin, compared to controls on all days in culture. However, expression of either of the deletion mutant forms of N-cadherin resulted in decreased condensation, with the extracellular deletion mutant demonstrating the most severe inhibition, suggesting a requirement for N-cadherin mediated cell-cell adhesion and signaling in cellular condensation. Subsequent chondrogenic differentiation was also affected in all cultures overexpressing the N-cadherin constructs, on the basis of metabolic sulfate incorporation, the presence of the cartilage matrix proteins collagen type II and cartilage proteoglycan link protein, and alcian blue staining of the matrix. The characteristics of the cultures suggest that the N-cadherin mutants disrupt proper cellular condensation and subsequent chondrogenesis, while the cultures overexpressing wild type N-cadherin appear to condense normally, but are unable to proceed toward differentiation, possibly due to the prolonged maintenance of increased cell-cell adhesiveness. Thus, spatiotemporally regulated N-cadherin expression and function, at the level of both homotypic binding and linkage to the cytoskeleton, is required for chondrogenesis of limb mesenchymal cells.  相似文献   

9.
10.
  • Plant microRNAs are small RNAs that are important for genetic regulation of processes such as plant development or environmental responses. Specific microRNAs accumulate in the phloem during phosphate starvation, and may act as long‐distance signalling molecules.
  • We performed quantitative PCR on Arabidopsis hypocotyl micrograft tissues of wild‐type and hen1‐6 mutants to assess the mobility of several phosphate starvation‐responsive microRNA species.
  • In addition to the previously confirmed mobile species miR399d, the corresponding microRNA* (miR399d*) was identified for the first time as mobile between shoots and roots. Translocation by phosphate‐responsive microRNAs miR827 and miR2111a between shoots and roots during phosphate starvation was evident, while their respective microRNA*s were not mobile.
  • The results suggest that long‐distance mobility of microRNA species is selective and can occur without the corresponding duplex strand. Movement of miR399d* and root‐localised accumulation of miR2111a* opens the potential for persisting microRNA*s to be mobile and functional in novel pathways during phosphate starvation responses.
  相似文献   

11.
12.
Second‐order susceptibility (SOS) microscopy is used to image and characterize chondrogenesis in cultured human mesenchymal stem cells. SOS analysis shows that the SOS tensor ratios can be used to characterize type I and II collagens in living tissues and that both collagen types are produced at the onset of chondrogenesis. Time‐lapse analysis shows a modulation of extracellular matrix results in a higher rate in increase of type II collagen, as compared to type I collagen. With time, type II collagen content stabilizes at the composition of 70% of total collagen content. SOS microscopy can be used to continuously and noninvasively monitor the production of collagens I and II. With additional development, this technique can be developed into an effective quality control tool for monitoring extracellular matrix production in engineered tissues.   相似文献   

13.
Summary Tissue-culture methods can be used to test the developmental capacity of embryonic cells. In micro-mass cultures, derived from wing cells of stages 21 through 24 chick embryos, aggregates of cells form and then differentiate into cartilage nodules, as judged by the presence of an Alcian blue staining extracellular matrix. Wing cells derived from embryos as young as stage 17 can form aggregates. However, unless they are treated with db cyclic AMP and theophylline, it is not until stage 20 that these aggregates can produce cartilage in culture. In clonal cell culture, cartilage colonies are not produced by primary cell suspensions of limb cells until stage 25 when overt cartilage differentiation is occurring in vivo. It is possible to obtain clonable cartilage cells from limb cells from embryos between stages 20 and 24 if the cells are either treated with db cyclic AMP and theophylline or maintained in suspension culture for 12 to 48 hr. On the basis of these in vitro results a multiple step model for the conversion of limb mesenchyme into cartilage cells is proposed. The model involves the appearance of cells with a predisposition to form aggregates, development of the capacity to form cartilage in response to elevated levels of cyclic AMP, the appearance of receptors that translate changes in either cell shape or cell cycle parameters into elevated levels of cyclic AMP, aggregation, elevated levels of cyclic AMP, cartilage cell determination, and differentiation. This model can serve as the basis for further tests. Presented in the Opening Symposium on Nutritional Factors and Differentiation at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by USPHS Training Grant HD00152 from the National Institute of Child Health and Human Development, while P.B.A. was a postdoctoral trainee, and by NIH Grant HD05505 to M.S.  相似文献   

14.
Prostate cancer (PC) is a very important kind of male malignancies. When PC evolves into a stage of hormone resistance or metastasis, the fatality rate is very high. Currently, discoveries and advances in miRNAs as biomarkers have opened the potential for the diagnosis of PC, especially early diagnosis. miRNAs not only can noninvasively or minimally invasively identify PC, but also can provide the data for optimization and personalization of therapy. Moreover, miRNAs have been shown to play an important role to predict prognosis of PC. The purpose of this meta‐analysis is to integrate the currently published expression profile data of miRNAs in PC, and evaluate the value of miRNAs as biomarkers for PC. All of relevant records were selected via electronic databases: Pubmed, Embase, Cochrane, and CNKI based on the assessment of title, abstract, and full text. we extracted mean ± SD or fold change of miRNAs expression levels in PC versus BPH or normal controls. Pooled hazard ratios (HRs) with 95% confidence intervals (CI) for overall survival (OS) and recurrence‐free survival (RFS), were also calculated to detect the relationship between high miRNAs expression and PC prognosis. Selected 104 articles were published in 2007‐2017. According to the inclusion criteria, 104 records were included for this meta‐analysis. The pooled or stratified analyze showed 10 up‐regulated miRNAs (miR‐18a, miR‐34a, miR‐106b, miR‐141, miR‐182, miR‐183, miR‐200a/b, miR‐301a, and miR‐375) and 14 down‐regulated miRNAs (miR‐1, miR‐23b/27b, miR‐30c, miR‐99b, miR‐139‐5p, miR‐152, miR‐187, miR‐204, miR‐205, miR‐224, miR‐452, miR‐505, and let‐7c) had relatively good diagnostic and predictive potential to discriminate PC from BPH/normal controls. Furthermore, high expression of miR‐32 and low expression of let‐7c could be used to differentiate metastatic PC from local/primary PC. Additional interesting findings were that the expression profiles of five miRNAs (miR‐21, miR‐30c, miR‐129, miR‐145, and let‐7c) could predict poor RFS of PC, while the evaluation of miR‐375 was associated with worse OS. miRNAs are important regulators in PC progression. Our results indicate that miRNAs are suitable for predicting the different stages of PC. The detection of miRNAs is an effective way to control patient's prognosis and evaluate therapeutic efficacy. However, large‐scale detections based on common clinical guidelines are still necessary to further validate our conclusions, due to the bias induced by molecular heterogeneity and differences in study design and detection methods.  相似文献   

15.
16.
Early loss of up to 50% of cells is common for in vitro chondrogenesis of mesenchymal stromal cells (MSC) in pellet culture, reducing the efficacy and the tissue yield for cartilage engineering. Enhanced proliferation could compensate for this unwanted effect, but relevant signaling pathways remain largely unknown. The aim of this study was to identify the contribution of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), insulin‐like growth factor (IGF), and hedgehog (HH) signaling toward cell proliferation during chondrogenesis and investigate whether a further mitogenic stimulation is possible and promising. Human MSC were subjected to chondrogenesis in the presence or absence of pathway inhibitors or activators up to Day 14 or from Days 14 to 28, before proliferation, DNA and proteoglycan content were quantified. [3H]‐thymidine incorporation revealed arrest of proliferation on Day 3, after which cell division was reinitiated. Although BMP signaling was essential for proliferation throughout chondrogenesis, IGF signaling was relevant only up to Day 14. In contrast, FGF and HH signaling drove proliferation only from Day 14 onward. Early BMP4, IGF‐1, or FGF18 treatment neither prevented early cell loss nor allowed further mitogenic stimulation. However, application of the HH‐agonist purmorphamine from Day 14 increased proliferation 1.44‐fold (p < 0.05) and late BMP4‐application enhanced the DNA and proteoglycan content, with significant effects on tissue yield. Conclusively, a differential and phase‐dependent contribution of the four pathways toward proliferation was uncovered and BMP4 treatment was promising to enhance tissue yield. Culture forms less prone to size limitations by nutrient/oxygen gradients and a focus on early apoptosis prevention may be considered as the next steps to further enhance chondrocyte formation from MSC.  相似文献   

17.
Prion protein (PrPC), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrPC in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline‐regulated lentiviral vectors that up‐regulate or suppresses PrPC expression. Here, we show that expression of PrPC in pluripotent hESCs cultured under self‐renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrPC in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over‐expression of PrPC in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrPC is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self‐renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrPC is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self‐renewal state, control cell proliferation activity, and define stem cell fate.  相似文献   

18.
The derivation of embryonic stem cells (hESC) from human embryos a decade ago started a new era in perspectives for cell therapy as well as understanding human development and disease. More recently, reprogramming of somatic cells to an embryonic stem cell‐like state (induced pluripotent stem cells, iPS) presented a new milestone in this area, making it possible to derive all cells types from any patients bearing specific genetic mutations. With the development of efficient differentiation protocols we are now able to use the derivatives of pluripotent stem cells to study mechanisms of disease and as human models for drug and toxicology testing. In addition derivatives of pluripotent stem cells are now close to be used in clinical practice although for the heart, specific additional challenges have been identified that preclude short‐term application in cell therapy. Here we review techniques presently used to induce differentiation of pluripotent stem cells into cardiomyocytes and the potential these cells have as disease models and for therapy. J. Cell. Biochem. 107: 592–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Embryonic stem (ES) cells provide an invaluable tool for molecular analysis of vertebrate development and a bridge linking genomic manipulations in vitro and functional analysis of target genes in vivo. Work towards fish ES cells so far has focused on zebrafish (Danio renio) and medaka (Oryzias latipes). Here we describe the derivation, pluripotency, differentiation and growth responses of ES cell lines from Nile tilapia (Oreochromis niloticus), a world‐wide commercial farmed fish. These cell lines, designated as TES1‐3, were initiated from blastomeres of Nile tilapia middle blastula embryos (MBE). One representative line, TES1, showed stable growth and phenotypic characteristics of ES cells over 200 days of culture with more than 59 passages under feeder‐free conditions. They exhibited high alkaline phosphatase activity and expression of pluripotency genes including pou5f3 (the pou5f1/oct4 homologue), sox2, myc and klf4. In suspension culture together with retinoic acid treatment, TES1 cells formed embryoid bodies, which exhibited expression profile of differentiation genes characteristics of all three germ cell layers. Notably, PKH26‐labeled TES1 cells introduced into Nile tilapia MBE could contribute to body compartment development and led to hatched chimera formation with an efficacy of 13%. These results suggest that TES1 cells have pluripotency and differentiation potential in vitro and in vivo. In the conditioned DMEM, all of the supplements including the fetal bovine serum, fish embryonic extract, fish serum, basic fibroblast growth factor and non‐protein supplement combination 5N were mitogenic for TES1 cell growth. This study will promote ES‐based biotechnology in commercial fish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号