首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate transport is a critical process in the brain that maintains low extracellular levels of glutamate to allow for efficient neurotransmission and prevent excitotoxicity. Loss of glutamate transport function is implicated in epilepsy, traumatic brain injury, and amyotrophic lateral sclerosis. It remains unclear whether or not glutamate transport can be modulated in these disease conditions to improve outcome. Here, we show that sirtuin (SIRT)4, a mitochondrial sirtuin, is up‐regulated in response to treatment with the potent excitotoxin kainic acid. Loss of SIRT4 leads to a more severe reaction to kainic acid and decreased glutamate transporter expression and function in the brain. Together, these results indicate a critical and novel stress response role for SIRT4 in promoting proper glutamate transport capacity and protecting against excitotoxicity.

  相似文献   


2.
In the present study, the effects of the two classical anti‐epileptic drugs, carbamazepine and valproic acid, and the non‐classical anti‐seizure drug vinpocetine were investigated on the expression of the pro‐inflammatory cytokines IL‐1β and TNF‐α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti‐seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro‐convulsive agents 4‐aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti‐seizure drugs on seizures and on the concomitant rise in pro‐inflammatory cytokine expression induced by 4‐aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL‐1β and TNF‐α from basal conditions, and the increase in both pro‐inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL‐1β and TNF‐α expression induced by LPS. Tonic‐clonic seizures induced either by 4‐aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL‐1β and TNF‐α markedly. 4‐aminopyridine‐induced changes were reduced by all the tested anti‐seizure drugs, although valproic acid was less effective. We conclude that the anti‐seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation.

  相似文献   


3.
Intravenous immunoglobulin (IVIG) contains anti‐amyloid‐β antibodies as well as antibodies providing immunomodulatory effects that may modify chronic inflammation in Alzheimer's disease. Answers to important questions about IVIG transport into the central nervous system and assessments of any impact amyloid‐β has on this transport can be provided by in vitro models of the blood–brain barrier. In this study, amyloid‐β[1‐42] was pre‐aggregated into fibrillar or oligomeric structures, and various concentrations were incubated in the brain side of the blood–brain barrier model, followed by IVIG administration in the blood side at the therapeutically relevant concentrations of 5 and 20 mg/mL. IVIG accumulated in the brain side at physiologically relevant levels, with amyloid‐β pre‐incubation increasing IVIG accumulation. The increased transport effect was dependent on amyloid‐β structural form, amyloid‐β concentration, and IVIG dose. IVIG was found to decrease monocyte chemotactic protein‐1 levels 6.5–18% when low amyloid‐β levels were present and increase levels 4.2–23% when high amyloid‐β levels were present. Therefore, the presence, concentration, and structure of amyloid‐β plays an important role in the effect of IVIG therapy in the brain.

  相似文献   


4.
For over the last 50 years, the molecular mechanism of anti‐psychotic drugs' action has been far from clear. While risperidone is very often used in clinical practice, the most efficient known anti‐psychotic drug is clozapine (CLO). However, the biochemical background of CLO's action still remains elusive. In this study, we performed comparative proteomic analysis of rat cerebral cortex following chronic administration of these two drugs. We observed significant changes in the expression of cytoskeletal, synaptic, and regulatory proteins caused by both antipsychotics. Among other proteins, alterations in collapsin response mediator proteins, CRMP2 and CRMP4, were the most spectacular consequences of treatment with both drugs. Moreover, risperidone increased the level of proteins involved in cell proliferation such as fatty acid‐binding protein‐7 and translin‐associated factor X. CLO significantly up‐regulated the expression of visinin‐like protein 1, neurocalcin δ and mitochondrial, stomatin‐like protein 2, the calcium‐binding proteins regulating calcium homeostasis, and the functioning of ion channels and receptors.

  相似文献   


5.
6.
7.
Parkinson's disease (PD) is an age‐related, neurodegenerative motor disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of α‐synuclein‐containing protein aggregates. Mutations in the mitochondrial Ser/Thr kinase PTEN‐induced kinase 1 (PINK1) are associated with an autosomal recessive familial form of early‐onset PD. Recent studies have suggested that PINK1 plays important neuroprotective roles against mitochondrial dysfunction by phosphorylating and recruiting Parkin, a cytosolic E3 ubiquitin ligase, to facilitate elimination of damaged mitochondria via autophagy‐lysosomal pathways. Loss of PINK1 in cells and animals leads to various mitochondrial impairments and oxidative stress, culminating in dopaminergic neuronal death in humans. Using a 2‐D polyacrylamide gel electrophoresis proteomics approach, the differences in expressed brain proteome and phosphoproteome between 6‐month‐old PINK1‐deficient mice and wild‐type mice were identified. The observed changes in the brain proteome and phosphoproteome of mice lacking PINK1 suggest that defects in signaling networks, energy metabolism, cellular proteostasis, and neuronal structure and plasticity are involved in the pathogenesis of familial PD.

  相似文献   


8.
High levels of manganese (Mn) exposure decrease striatal medium spiny neuron (MSN) dendritic length and spine density, but the mechanism(s) are not known. The Huntingtin (HTT) gene has been functionally linked to cortical brain‐derived neurotrophic factor (BDNF) support of striatal MSNs via phosphorylation at serine 421. In Huntington's disease, pathogenic CAG repeat expansions of HTT decrease synthesis and disrupt transport of cortical–striatal BDNF, which may contribute to disease, and Mn is a putative environmental modifier of Huntington's disease pathology. Thus, we tested the hypothesis that changes in MSN dendritic morphology Mn due to exposure are associated with decreased BDNF levels and alterations in Htt protein. We report that BDNF levels are decreased in the striatum of Mn‐exposed non‐human primates and in the cerebral cortex and striatum of mice exposed to Mn. Furthermore, proBDNF and mature BDNF concentrations in primary cortical and hippocampal neuron cultures were decreased by exposure to Mn confirming the in vivo findings. Mn exposure decreased serine 421 phosphorylation of Htt in cortical and hippocampal neurons and increased total Htt levels. These data strongly support the hypothesis that Mn‐exposure‐related MSN pathology is associated with decreased BDNF trophic support via alterations in Htt.

  相似文献   


9.
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell‐surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over‐expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition.

  相似文献   


10.
Previous studies have shown that fastigial nucleus stimulation (FNS) reduces tissue damage resulting from focal cerebral ischemia. Although the mechanisms of neuroprotection induced by FNS are not entirely understood, important data have been presented in the past two decades. MicroRNAs (miRNAs) are a newly discovered group of non‐coding small RNA molecules that negatively regulate target gene expression and are involved in the regulation of cell proliferation and cell apoptosis. To date, no studies have demonstrated whether miRNAs can serve as mediators of the brain's response to FNS, which leads to endogenous neuroprotection. Therefore, this study investigated the profiles of FNS‐mediated miRNAs. Using a combination of deep sequencing and microarray with computational analysis, we identified a novel miRNA in the rat ischemic cortex after 1 h of FNS. This novel miRNA (PC‐3p‐3469_406), herein referred to as rno‐miR‐676‐1, was upregulated in rats with cerebral ischemia after FNS. In vivo observations indicate that this novel miRNA may have antiapoptotic effects and contribute to neuroprotection induced by FNS. Our study provides a better understanding of neuroprotection induced by FNS.

  相似文献   


11.
Significant progress in elucidating the genetic etiology of anxiety and depression has been made during the last decade through a combination of human and animal studies. In this study, we aimed to discover genetic loci linked with anxiety as well as depression in order to reveal new candidate genes. Therefore, we initially tested the behavioral sensitivity of 543 F2 animals derived from an intercross of C57BL/6J and C3H/HeJ mice in paradigms for anxiety and depression. Next, all animals were genotyped with 269 microsatellite markers with a mean distance of 5.56 cM. Finally, a Quantitative Trait Loci (QTL) analysis was carried out, followed by selection of candidate genes. The QTL analysis revealed several new QTL on chromosome 5 with a common core interval of 19 Mb. We further narrowed this interval by comparative genomics to a region of 15 Mb. A database search and gene prioritization revealed Enoph1 as the most significant candidate gene on the prioritization list for anxiety and also for depression fulfilling our selection criteria. The Enoph1 gene, which is involved in polyamine biosynthesis, is differently expressed in parental strains, which have different brain spermidine levels and show distinct anxiety and depression‐related phenotype. Our result suggests a significant role in polyamines in anxiety and depression‐related behaviors.

  相似文献   


12.
Cellular interactions mediated by the neural cell adhesion molecule (NCAM) are critical in cell migration, differentiation and plasticity. Switching of the NCAM‐interaction mode, from adhesion to signalling, is determined by NCAM carrying a particular post‐translational modification, polysialic acid (PSA). Regulation of cell‐surface PSA‐NCAM is traditionally viewed as a direct consequence of polysialyltransferase activity. Taking advantage of the polysialyltransferase Ca2+‐dependent activity, we demonstrate in TE671 cells that downregulation of PSA‐NCAM synthesis constitutes a necessary but not sufficient condition to reduce cell‐surface PSA‐NCAM; instead, PSA‐NCAM turnover required internalization of the molecule into the cytosol. PSA‐NCAM internalization was specifically triggered by collagen in the extracellular matrix (ECM) and prevented by insulin‐like growth factor (IGF1) and insulin. Our results pose a novel role for IGF1 and insulin in controlling cell migration through modulation of PSA‐NCAM turnover at the cell surface.

  相似文献   


13.
The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro‐apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis‐inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.

  相似文献   


14.
Acyl‐CoA‐binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl‐CoA esters. Several studies have suggested that ACBP acts as an acyl‐CoA pool former and regulates long‐chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam‐Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism‐related gene expression using ACBP‐deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA‐CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes.

  相似文献   


15.
Tuftsin (Thr‐Lys‐Pro‐Arg) is a natural immunomodulating peptide found to stimulate phagocytosis in macrophages/microglia. Tuftsin binds to the receptor neuropilin‐1 (Nrp1) on the surface of cells. Nrp1 is a single‐pass transmembrane protein, but its intracellular C‐terminal domain is too small to signal independently. Instead, it associates with a variety of coreceptors. Despite its long history, the pathway through which tuftsin signals has not been described. To investigate this question, we employed various inhibitors to Nrp1's coreceptors to determine which route is responsible for tuftsin signaling. We use the inhibitor EG00229, which prevents tuftsin binding to Nrp1 on the surface of microglia and reverses the anti‐inflammatory M2 shift induced by tuftsin. Furthermore, we demonstrate that blockade of transforming growth factor beta (TGFβ) signaling via TβR1 disrupts the M2 shift similar to EG00229. We report that tuftsin promotes Smad3 phosphorylation and reduces Akt phosphorylation. Taken together, our data show that tuftsin signals through Nrp1 and the canonical TGFβ signaling pathway.

  相似文献   


16.
Vanishing white matter (VWM) is a recessive neurodegenerative disease caused by mutations in translation initiation factor eIF2B and leading to progressive brain myelin deterioration, secondary axonal damage, and death in early adolescence. Eif2b5R132H/R132H mice exhibit delayed developmental myelination, mild early neurodegeneration and a robust remyelination defect in response to cuprizone‐induced demyelination. In the current study we used Eif2b5R132H/R132H mice for mass‐spectrometry analyses, to follow the changes in brain protein abundance in normal‐ versus cuprizone‐diet fed mice during the remyelination recovery phase. Analysis of proteome profiles suggested that dysregulation of mitochondrial functions, altered proteasomal activity and impaired balance between protein synthesis and degradation play a role in VWM pathology. Consistent with these findings, we detected elevated levels of reactive oxygen species in mutant‐derived primary fibroblasts and reduced 20S proteasome activity in mutant brain homogenates. These observations highlight the importance of tight translational control to precise coordination of processes involved in myelin formation and regeneration and point at cellular functions that may contribute to VWM pathology.

  相似文献   


17.
Niemann Pick type C (NPC1) is a rare fatal hereditary cholesterol storage disease associated with a massive Purkinje cells loss. The mechanisms leading to neurodegeneration are still poorly understood. Different laboratories pointed to hypersensitivity to cytotoxic effects of statins (HMG‐CoA reductase inhibitors) in NPC1 and suggested an underlying lack of geranylgeranyl pyrophosphate (GGPP). GGPP is a non‐sterol isoprenoid essential for cell survival and differentiation. We measured GGPP levels in cerebella of a NPC1 mouse model and of wild‐type littermates and found a physiological increase of GGPP levels between post‐natal days 21 and 49 in wild‐type mice but not in NPC mice. This further supports the hypothesis that Purkinje cell loss may be due to an extremely low level of GGPP. The progressive Purkinje cell loss in NPC starts between p21 and p49. To test the hypothesis, we used long‐term organotypic slice cultures of NPC1 mice that display the natural history of NPC1 disease in vitro and tested if chronic administration of GGPP might prevent Purkinje cell loss. We did not see a beneficial effect. This suggests, in contrast to the expectations, that the relative lack of GGPP may not significantly contribute to mechanisms of Purkinje cell loss in NPC1.

  相似文献   


18.
19.
Bisphenol‐A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)‐induced memory impairment, whereas co‐exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up‐regulated synaptic proteins synapsin I and PSD‐95 and NMDA receptor NR2B but inhibited EB‐induced increase in PSD‐95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  相似文献   


20.
Parkinson's disease (PD) and diabetes belong to the most common neurodegenerative and metabolic syndromes, respectively. Epidemiological links between these two frequent disorders are controversial. The neuropathological hallmarks of PD are protein aggregates composed of amyloid‐like fibrillar and serine‐129 phosphorylated (pS129) α‐synuclein (AS). To study if diet‐induced obesity could be an environmental risk factor for PD‐related α‐synucleinopathy, transgenic (TG) mice, expressing the human mutant A30P AS in brain neurons, were subjected after weaning to a lifelong high fat diet (HFD). The TG mice became obese and glucose‐intolerant, as did the wild‐type controls. Upon aging, HFD significantly accelerated the onset of the lethal locomotor phenotype. Coinciding with the premature movement phenotype and death, HFD accelerated the age of onset of brainstem α‐synucleinopathy as detected by immunostaining with antibodies against pathology‐associated pS129. Amyloid‐like neuropathology was confirmed by thioflavin S staining. Accelerated onset of neurodegeneration was indicated by Gallyas silver‐positive neuronal dystrophy as well as astrogliosis. Phosphorylation of the activation sites of the pro‐survival signaling intermediate Akt was reduced in younger TG mice after HFD. Thus, diet‐induced obesity may be an environmental risk factor for the development of α‐synucleinopathies. The molecular and cellular mechanisms remain to be further elucidated.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号