首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In August 2004 and 2005, an extensive study of the fish community was carried out in the largest water supply reservoir in the Czech Republic and Central Europe, the canyon‐shaped ?elivka Reservoir, using a fleet of Nordic multimesh gillnets. Fishes were sampled at eight locations along the longitudinal profile of the reservoir and at five benthic depth layers covering depths from the surface down to 18 m (benthic gillnet 1·5 m high), and at three pelagic depth layers down to the depth of 5 m above the bottom (pelagic gillnets 4·5 m high). Catches of both juvenile (age 0+ year) and adult (fishes >1 year) fishes were highest in the upper layers of the water column (i.e. in the epilimnion down to 5 m, and down to 10 m in the benthic habitats). Along the tributary–dam axis in the pelagic habitats, both juvenile and adult fishes preferred the upper part of the reservoir, where the maximum number of species and also the greatest abundance of zooplankton were found. In the benthic habitats, fishes selected location according to factors other than trophic status. More juvenile fishes were recorded in the benthic habitats than in the pelagic habitats. Depth had the largest explanatory power for predicting fish community composition, followed by the affiliation with benthic and pelagic habitats, and location on the longitudinal axis of the reservoir. The fish community was represented mainly by cyprinids and consisted of two distinct groups of species, with bleak Alburnus alburnus, rudd Scardinius erythrophthalmus and asp Aspius aspius dominating the offshore group while perch Perca fluviatilis and ruffe Gymnocephalus cernuus were affiliated with the inshore group of the adult fish community. Roach Rutilus rutilus, bream Abramis brama and pikeperch Sander lucioperca occurred in important proportions in both the inshore and the offshore zones. All species, with the exceptions of adult perch (1+ year and older), 0+ year perch and 0+ year roach, preferred the most eutrophic tributary part of the reservoir. The fish community was relatively stable between the 2 years sampled.  相似文献   

3.
A time‐resolved record of inhabited water depth, metabolic rate and trophic behaviour of the orange roughy Hoplostethus atlanticus was recovered from combined stable‐isotope analyses of otolith and muscle tissue. The results demonstrate that H. atlanticus from the north‐east Atlantic Ocean have a complex life history with three distinct depth‐stratified life stages. Early juvenile H. atlanticus occupy relatively shallow habitats, juvenile H. atlanticus show a deep‐demersal phase, rising at sexual maturity, and adult H. atlanticus exploit increasingly deep habitats with increasing age. At all sampled sizes, H. atlanticus muscle tissues have an isotopic composition suggesting a benthic rather than benthopelagic or pelagic diet. Isotopic measures of relative metabolic rate provide an insight into energy partitioning throughout ontogeny. Hoplostethus atlanticus have relatively low metabolic rates compared to coexisting deep‐water benthic fishes, consistent with their unusually high longevity. Surprisingly, lifetime fastest growth rates are achieved during juvenile stages when otolith isotopes imply deep‐water residency and relatively low metabolic rates. Fast growth may be sustained during a period of high efficiency associated with reduced metabolic costs of prey capture or predator evasion. The stable‐isotope approach can be applied to any teleost and provides a rapid, cost‐effective technique for studying deep‐water fish communities.  相似文献   

4.
1. Sampling of lake fish assemblages is a challenging task in fish science, and the information obtained strongly depends on the choice of sampling gear. The use of more than one sampling technique is generally preferred in order to achieve a comprehensive view on fish assemblage structure. Therefore, the knowledge of whether catches between fishing gears are comparable is crucial. 2. We compared catches in benthic multi‐mesh gillnets with fish biomass estimates obtained by vertical hydroacoustics in 18 European lakes strongly varying in morphometry and trophic status. Separate analyses were conducted for different depth strata and for several fish length thresholds to account for depth‐ and size‐selective gillnet catches. 3. Gillnet catches and hydroacoustically obtained fish biomass estimates were significantly correlated. The strength of correlations was independent of the fish length thresholds applied, but varied across different depth strata of the lakes, with the strongest correlations occurring in the shallow strata. 4. The results support the applicability of vertical hydroacoustics for the quantification of fish biomass in stratified lakes. Survey designs combining hydroacoustics with limited gillnetting at sampling dates shortly one after the other, the latter for the purpose of inventory sampling only, are a cost‐effective strategy for sampling fish assemblages in lakes. However, gillnet sampling does not provide reliable fish density estimates in very deep lakes with separate, pelagic‐dwelling fish assemblages.  相似文献   

5.
The fish stock of a deep temperate, mesotrophic lake was sampled at different depths using a fixed‐frame fry trawl, during two nights in mid‐September 2009. Additionally, horizontal and vertical hydroacoustics were used simultaneously to evaluate fish abundance and biomass estimates obtained by the trawl. Roach Rutilus rutilus and smelt Osmerus eperlanus were the dominant species of young‐of‐the‐year (YOY) fish in the trawl catches from the surface layers (0–9 m). Bleak Alburnus alburnus dominated the catch of older fish in the upper part of the surface profile (0–6 m). Around the thermocline (9–13 m) smelt dominated the catches of both the YOY and older fish. Beneath the thermocline (13–36 m) vendace Coregonus albula dominated the catch of YOY fish, and smelt was the only species of older fish in the trawl catches. Species composition, abundance and biomass of the YOY and older fish were heterogeneous throughout the depth profiles of the lake, but only abundance differed significantly between the layers. The hydroacoustics gave relatively similar estimates of abundance and biomass to those obtained by the trawl in all the depths sampled. Our results indicate that there is a clear separation of small fish of different species along the vertical profile of a deep temperate lake during the night, and an unequal vertical distribution of fish abundance and biomass. The similarity of the trawl and hydroacoustics estimates of abundances and biomass indicated that the trawl sampling did not cause important avoidance reactions of small fish during the night in this deep temperate lake (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This paper presents the results of an inter‐calibration between acoustic and gillnets sampling in two North African reservoirs according to seasons. Gillnets with multi‐mesh were designed for sampling fish in lakes while acoustic surveys were performed with a split beam Simrad EK60 echosounder. Sampling events were carried out during summer (September 2015), autumn (December 2015), winter (March 2016) and spring (June 2016) in two Tunisian reservoirs (Kasseb and Siliana) with different depths and shapes. Gillnet catches showed a high proportion of barbell whatever the seasons in Kasseb Reservoir, while at Siliana Reservoir, significant seasonal changes in relative abundances have been evidenced. The highest fish biomass of the entire water column was observed in winter daytime (103 kg/ha) in Kasseb Reservoir and in summer daytime (283 kg/ha) in Siliana Reservoir. Average biomass observed in autumn (December) for the two reservoirs were lower than the other seasons. During spring, density daytime values in Kasseb were higher than during nighttime while it was the opposite in summer and autumn. Fish densities detected in Kasseb Reservoir in vertical beaming was higher than those detected in horizontal beaming (p < .05). The longitudinal distribution of fish in the reservoirs showed that there is no clear trend in fish densities according to strata. High numbers of fish were detected in deep strata and big fish were located in the surface water near the dam of Kasseb Reservoir. A significant linear correlation was showed between acoustic density/NPUE and acoustic biomass/BPUE but the perfect correlation with the 1:1 fit was showed only between acoustic biomass/BPUE.  相似文献   

7.
Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10N = ?0·000422x + 3·610000 (r2 = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (?0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (?0·000488) and Actinopterygii (?0·000413) follow this trend but Chondrichthyes decrease more rapidly (?0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7–7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya ). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep‐sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep‐sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling recovery from regional extinctions. Deep‐sea invasive families such as Ophidiidae and Liparidae make the greatest contribution to fish fauna at depths >6000 m.  相似文献   

8.
9.
All sampling methods give selective or biased estimates of fish species abundance, distribution and size structure. This creates problems, e.g. in regard to the Water Framework Directive of the European Union, which demands evaluation of the quality and status of fish stocks in lakes. We compared fish sampling by means of Nordic multimesh gillnets, seining, trawling and hydroacoustics in two Finnish lakes in summer 2007 and 2008. Sampling methods were used ‘as such’, i.e. no special design was implemented for method comparison. In the shallow eutrophicated lake the species’ composition of gillnet sampling and seining were very different. The biomass-% of percids dropped from gillnet (61%) to seining (9%) and that of cyprinids grew from 39 to 90%, respectively. In the deep pelagic area of the oligotrophic lake, vendace and smelt predominated in trawl catches. The number of fish caught by gillnetting in that area was too small to make any conclusions about the species composition. In the eutrophicated lake, the combined length distribution for all fish species differed significantly between gillnetting and seining. In the oligotrophic lake, the gillnet catches were too small for any comparison of fish size. The difference in the length distribution of fish between trawl and echosounding was significant in most analysed depth layers. In upper depth layers acoustics sampled larger fish than trawling, and in deeper layers smaller fish. Using a combined acoustic-trawl method, the pelagic fish biomass was estimated to be approx. 17 kg ha−1 in the deep and oligotrophic lake. We conclude that in large and deep-water areas, the use of active gear is enough in fish sampling to evaluate the quality and status of fish stocks. Gillnetting together with seining is an appropriate method to work out the quality and status of fish stocks in shallow and littoral areas of large lakes. Variation in the catch selectivity of fish sampling gear requires a discrete ecological classification for each type of gear.  相似文献   

10.
In lentic freshwater systems, vertical acoustics may underestimate fish abundance in the acoustic dead zone where fish detection capability is limited. To estimate this bias, the height of fish above the lead‐line of a benthic multi‐mesh gillnet (1.5 m high) was used to quantify both the vertical distribution of fish near the bottom and the proportion residing within the acoustic dead zone. The study was carried out at the percid‐dominated Biesbosch Reservoirs in the Netherlands. Acoustic dead zones were estimated at 7 cm above flat bottoms, and 12–34 cm above 8° sloped bottoms at depths of 5–27 m, respectively. Depending on the habitat, 36 to 75% of the gillnet catch by number was present in the acoustic dead zone, representing 5–51% of the biomass. Near‐bottom depths were highly preferred by ruffe Gymnocephalus cernua, often used by perch Perca fluviatilis and pikeperch Sander lucioperca, plus seemingly devoid of smelt Osmerus eperlanus. The total amount of fish hidden in the acoustic dead zone was estimated to be 13–39% of the whole water column. The proportion of biomass obscured in the dead zone was lower (1–12%). The conclusion is that undetected fish in the acoustic dead zone can seriously bias density assessment, which can be corrected by concurrent sampling with benthic gillnets.  相似文献   

11.
It was hypothesized that energetically efficient anguilliform swimming and axial elongation in fishes is favoured in the deep sea and predicted that the degree of elongation of the body form of fishes would increase with depth. An index of fish shape was derived from the relationship between length and mass. This was combined with data on abundance of c. 266 fish species from 389 research trawl tows made at depths of between 300 and 2030 m in the north‐east Atlantic Ocean. The degree of elongation of the fish increased with depth to c. 1250 m before levelling off. The strength of this phenomenon varied between higher level taxa, being most apparent in the Gadiformes and Osmeriformes, and weak or absent in the Perciformes and Selachimorpha. The advantage of efficient elongate body forms may explain why certain taxa such as the grenadiers (Macrouridae) have dominated the deep sea, some have restricted depth ranges, e.g. the sharks, skates and rays, and others are almost entirely absent, e.g. the flatfishes (Pleuronectiformes).  相似文献   

12.
1. Fish community structure and habitat distribution of the abundant species roach, perch and ruffe were studied in Lake Nordborg (Denmark) before (August 2006) and after (August 2007) aluminium treatment to reduce internal phosphorus loading. 2. Rapid changes in fish community structure, abundance and habitat distribution occurred following a decline in in‐lake phosphorus concentrations from 280 to 37 μg P L?1 and an increase in Secchi depth transparency from 1.1 to 1.9 m (August). The proportion of perch in overnight gill net catches increased, whilst roach decreased, and the average weight of all key species increased. 3. The habitat distribution of perch and roach changed from a high proportion in the upper pelagic and littoral zones in 2006, towards enhanced proportions in the deeper pelagic and profundal zone in 2007. The abundance of large‐bodied zooplankton increased and the abundance of benthic invertebrates decreased in the same period, suggesting that the habitat shift was not induced by food limitation. 4. Ruffe shifted from the littoral and upper profundal zones towards the deep profundal zone, likely reflecting an increased predation risk in the littoral zone and better oxygen conditions in the deep profundal. 5. Our results indicate that enhanced risk of predation in the upper pelagic and the littoral zones and perhaps improved oxygen concentrations in the deeper profundal zone at decreasing turbidity are responsible for the observed habitat shift. The results indicate that fish respond rapidly to changes in nutrient state, both in terms of community structure and habitat use.  相似文献   

13.
Studies of geographical patterns of diversity have focused largely on compiling and analysing data to evaluate alternative hypotheses for the near‐universal decrease in species richness from the equator to the poles. Valuable insights into the mechanisms that promote diversity can come from studies of other patterns, such as variation in species distributions with elevation in terrestrial systems or with depth in marine systems. To obtain such insights, we analysed and interpreted data on species diversity, depth of occurrence and body size of pelagic fishes along an oceanic depth gradient. We used a database on pelagic marine fishes native to the north‐east Pacific Ocean between 40°N and 50°N. We used data from the Pacific Rim Fisheries Program that were obtained from commercial, management and scientific surveys between 1999 and 2000. Depth of occurrence and maximum body length were used to assess the distributions of 409 species of pelagic fishes along a depth gradient from 0 to 8000 m. A presence–absence matrix was used to classify the depth range of each species into 100‐m intervals. Atmar & Patterson's (1995 ) software was used to quantify the degree of nestedness of species distributions. Pelagic fish species diversity decreased steeply with increasing depth; diversity peaked at less than 200 m and more than half of the species had mean depths of occurrence between 0 and 300 m. The distribution of species showed a very strong nested subset pattern along the depth gradient. Whereas species with narrow ranges were generally restricted to shallow waters, wide‐ranging species occurred from near the surface to great depths. The relationship between maximum body size and mean depth range differed between teleost and elasmobranch fishes: being positive for teleosts, but negative for elasmobranches. Results support hypotheses that some combination of high productivity and warm temperature promote high species diversity, and reject those that would attribute the pattern of species richness to the mid‐domain effect, habitat area, or environmental constancy. The data provided a clear example of Rapoport's rule, a negative correlation between average depth range and species diversity.  相似文献   

14.
Synopsis Twenty-two fish aggregation devices were deployed in 14 m of water off South Carolina. Species composition and abundance were determined by diver visual census on eight occasions from May through November, 1985. A total of 21 families and 36 species of fishes was observed at 121 stations. Pelagic fishes dominated the fauna with a 99.3% relative abundance, and Decapterus punctatus accounted for 97.6% of the individuals. Caranx crysos, Diplectrum formosum, Decapterus punctatus, Centropristis striata and Monacanthus hispidus were the most frequent species. Total fish abundance, number of species and abundance of four of the six most common species were significantly affected by season. Hurricane activity may have caused a significant drop in pelagic fish abundance at the FADs in July. No significant correlations among species abundances were found after removal of season and FAD type effects. Spatial zonation and seasonal occurrence patterns suggest some competition among pelagic fishes. Several factors that regulate FAD faunal abundance and composition are hypothesized, including: juvenile fish availability, availability of shelter, availability of adequate food resources, interspecific and intraspecific competition, severe sea conditions, and sporadic intrusions of large predatory fishes. It is hypothesized that the abundances of benthic and pelagic FAD fishes are correlated and that there is a direct or indirect energetic link between shallow water pelagic and benthic fish assemblages near FADs.  相似文献   

15.
OPINION Manipulating lake community structure: where do we go from here?   总被引:1,自引:0,他引:1  
SUMMARY. 1 More than 10 years experience with whole lake pelagic manipulation has suggested some general trends applicable to all freshwater pelagic communities and some specific trends related to lake depth.
2 Among the general trends is the observation that the trophic cascade is strongly damped. This means that changes in phytoplankton biomass can be assured only when the fish community is strongly manipulated.
3 Among the depth related trends is the observation that in shallow lakes, changes in fish community structure are more likely to have cascading impacts on phytoplankton than are changes in deep lakes.
4 In shallow lakes, fish removal frequently results in decreased turbidity which is associated with the development of dense macrophyte populations and significant reductions of algal standing stocks. The mechanisms involve: increased grazing by zooplankton, the removal of fish induced bioturbation and nutrient recycling, and direct and indirect macrophyte effects (shading, zooplankton refuges and competition for nutrients).
5 In shallow lakes, where planktivore biomass can be regulated and macrophyte development is acceptable, fish biomanipulalions are likely to result in reduced algal populations and improved water quality.
6 In deep lakes, where macrophytes are not as important, long-term effects of fish manipulations are strongly dependent upon the probability of non-grazable algal bloom development. This is determined by many factors (chemical, physical and grazer related) which modify the impact that grazers have on phytoplankton biomass.
7 In deep lakes, successful fish biomanipulations may only be effective when chemical and physical factors are altered to produce algal species compositions that permit strong top-down control of prey by predators.  相似文献   

16.
A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964–1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983–1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m−2), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient.  相似文献   

17.
Habitat segregation has been recognized as an important means of resource partitioning in river fish assemblages. Association between river fishes and habitat features were identified through principal component analysis (PCA). Fish and habitat data were collected in the Kaoping, Tsengwen, Choshui, and Tatu rivers from July 1997 to June 1999 in western Taiwan. Electrofishing was used to collect fishes in grids, and environment variables in the sampled areas were measured immediately after sampling. The first four PCs of depth, velocity, cover, substrate and water temperature variables explained 92.3% of the total variance in habitat characteristics. Varicorhinus barbatulus, Acrossocheilus formosanus and Tilapia mossambica in the upper right quadrant, indicated preference for deep‐water habitat. Species usually associated with shallow water habitat include several minnow species. Rhinogobius brunneus, Hemimyzon formosanum, Sinogastromyzon puliensis and Crossostoma lacustre distribution is centred in the upper and lower left, indicating preference for shallow water. Principal component (PC) scores on Zacco pachycephalus, Abbottina brevirostris and Hemiculter leucisculus appeared to have no special preference. Differences in habitat use exhibited by these species may be related to success in finding food and avoiding predators.  相似文献   

18.
Food web management is a frequently used lake restoration method, which aims to reduce phytoplankton biomass by strengthening herbivorous zooplankton through reduction of planktivorous fish. However, in clay‐turbid lakes several factors may reduce the effectivity of food web management. Increasing turbidity reduces the effectivity of fish predation and weakens the link between zooplankton and phytoplankton. Therefore, the effects of fish stock manipulations may not cascade to lower trophic levels as expected. Additionally, in clay‐turbid conditions invertebrate predators may coexist in high densities with planktivorous fish and negate the effects of fish reductions. For instance, in the stratifying regions of the clay‐turbid Lake Hiidenvesi, Chaoborus flavicans is the main regulator of cladocerans and occupies the water column throughout the day, although planktivorous Osmerus eperlanus is very abundant. The coexistence of chaoborids and fish is facilitated by a metalimnetic turbidity peak, which prevents efficient predation by fish. In the shallow parts of the lake, chaoborids are absent despite high water turbidity. We suggest that, generally, the importance of invertebrate predators in relation to vertebrate predators may change along turbidity and depth gradients. The importance of fish predation is highest in shallow waters with low turbidity. When water depth increases, the importance of fish in the top‐down regulation of zooplankton declines, whereas that of chaoborids increases, the change along the depth gradient being moderate in clear‐water lakes and steep in highly turbid lakes. Thus, especially deep clay‐turbid lakes may be problematic for implementing food web management as a restoration tool.  相似文献   

19.
We tested if pelagic crustaceans of the genus Daphnia use different anti-predator defences in environmental conditions that do or do not offer deep refuge from planktivorous fish. We kept Daphnia catawba in two series of 9-m deep enclosures with and without caged cyprinid fish Phoxinus eos. In one series of enclosures, Daphnia could select its depth of residence and hide in deep dark water layers to avoid anticipated fish predation, while in another series of enclosures, a plankton net barrier fixed at 2-m depth forced them to stay in subsurface zone exposed to fish kairomones. We compared depth residence and migratory behaviour strategies with life history strategies (body size and size at first reproduction, diapause induction) in Daphnia exposed or not to fish kairomones with or without deep refuge. In deep enclosures with fish, Daphnia spent daytime hours in deep dark layers while at night, they resided closer to the water surface. Yet, no change in life history parameters of migrating individuals was observed compared to the fish-free conditions. In enclosures with fish, where the net barrier forced Daphnia to reside in subsurface zone, they produced smaller offspring, matured at smaller size and achieved lower maximum body length compared to the fish-free conditions. However, they did not produce diapausing eggs. Our experimental study supports the hypothesis that diel vertical migration behaviour with daytime residence in deep, dark water are the preferred antipredator strategy chosen by Daphnia facing anticipated fish predation over life history changes such as reduced size and low growth rate which are used when dark deep refuge is not present or accessible.  相似文献   

20.
Three Lates species, L. mariae (Stdr.), L. microlepis (Blgr.), L. angustifrons (Blgr.) and Luciolates stappersii (Blgr.) which belongs to a monotypic genus occur only in Lake Tanganyika. They are the principal predators in the pelagic and benthic fish communities. Data are presented on distribution, growth, length-weight relationships, condition, reproduction and food in the Lates spp. After a post-larval pelagic phase, each Lates sp, spends 1 year in littoral weed. Thereafter, L. mariae adopts a benthic habitat moving into deep water, L. microlepis becomes exclusively pelagic and L. angustifrons occurs from the littoral to near the limit of the oxygenated zone. Cycles in breeding correspond with seasonal maxima in clupeid prey, and changes in growth rate within a year are probably related to physiological cycles rather than to variations in the physical environment. Salient morphological and ecological adaptations are discussed. Local abundance and vagility of Lates stocks seem related to basin morphometry and depth of the oxygenated layer. L. microlepis has most vagility. The Lates appear highly susceptible to intensive fishing by purse-seines, and have been fished-up in the southeast arm in Zambia and in the Burundi sector, where only small populations remain. With reduced predation, the clupeid biomass has increased. The change to dominance of small species may be accomplished rapidly in L. Tanganyika under such conditions of exploitation. However, the type of species successions well-known in large temperate lakes are unlikely to occur because of the high degree of specialization in these fishes. A simplified pelagic community is foreseen, consisting almost entirely of clupeids and Luciolates, in which the total fish biomass will be determined above some intensive level of fishing and from year to year by the environmental factors controlling survival of young and plank-tonic food supply. Quantitative equilibrium between the few species will be determined mainly by gear selectivity and total fishing stress, and the community may be sufficiently robust by reason of its rapid turn-over rates to permit a largely empirical approach to management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号