首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent decades have witnessed the revolutionary development of cancer immunotherapies, which boost cancer‐specific immune responses for long‐term tumor regression. However, immunotherapy still has limitations, including off‐target side effects, long processing times and limited patient responses. These disadvantages of current immunotherapy are being addressed by improving our understanding of the immune system, as well as by establishing combinational approaches. Advanced biomaterials and gene delivery systems overcome some of these delivery issues, harnessing adverse effects and amplifying immunomodulatory effects, and are superior to standard formulations with respect to eliciting antitumor immunity. Nucleic acid‐based nanostructures have diverse functions, ranging from gene expression and gene regulation to pro‐inflammatory effects, as well as the ability to specifically bind different molecules. A brief overview is provided of the recent advances in the non‐viral gene delivery methods that are being used to activate cancer‐specific immune responses. Furthermore, the tumor microenvironment‐responsive synergistic strategies that modulate the immune response by targeting various signaling pathways are discussed. Nanoparticle‐based non‐viral gene delivery strategies have great potential to be implemented in the clinic for cancer immunotherapy.  相似文献   

2.
3.
4.
5.
6.
7.
Dendritic cell (DC) immunotherapy is capable of generating tumour‐specific immune responses. Different maturation strategies were previously tested to obtain DC capable of anti‐cancer responses in vitro, usually with limited clinical benefit. Mutual comparison of currently used maturation strategies and subsequent complex evaluation of DC functions and their stimulatory capacity on T cells was performed in this study to optimize the DC vaccination strategy for further clinical application. DC were generated from monocytes using granulocyte–macrophage colony‐stimulating factor (GM‐CSF) and interleukin (IL)‐4, pulsed with whole tumour cell lysate and then matured with one of five selected maturation strategies or cultured without additional maturation stimulus. DC were characterized with regard to their surface marker expression, cytokine profiles, migratory capacity, allogeneic and autologous T cell stimulatory capacity as well as their specific cytotoxicity against tumour antigens. We were able to demonstrate extensive variability among different maturation strategies currently used in DC immunotherapeutic protocols that may at least partially explain limited clinical benefit of some clinical trials with such DC. We identified DC matured with interferon‐γ and lipopolysaccharide as the most attractive candidate for future clinical trials in cancer immunotherapy.  相似文献   

8.
Gene and immunotherapeutic approaches to treat human malignant tumors are reviewed. Special attention is given to the different strategies of cancer gene therapy and to recent aspects of cytokine-supported tumor immunotherapy or tumor-specific vaccination. The limitations of these therapy approaches are critically discussed especially with respect to immune escape mechanisms.  相似文献   

9.
10.
Electroporation improves the anti‐tumour efficacy of chemotherapeutic and gene therapies. Combining electroporation‐mediated chemotherapeutics with interleukin 12 (IL‐12) plasmid DNA produces a strong yet safe anti‐tumour effect for treating primary and refractory tumours. A previously published report demonstrated the efficacy of a single cycle of IL‐12 plasmid DNA and bleomycin in canines, and, similarly, this study further demonstrates the safety and efficacy of repeated cycles of chemotherapy plus IL‐12 gene therapy for long‐term management of aggressive tumours. Thirteen canine patients were enrolled in this study and received multiple cycles of electro‐chemo‐gene therapy (ECGT) with IL‐12 pDNA and either bleomycin or gemcitabine. ECGT treatments are very effective for inducing tumour regression via an antitumour immune response in all tested histotypes except for sarcomas, and these treatments can quickly eradicate or debulk large squamous cell carcinomas. The versatility of ECGT allows for response‐based modifications which can overcome treatment resistance for affecting refractory lesions. Importantly, not a single severe adverse event was noted even in animals receiving the highest doses of chemotherapeutics and IL12 pDNA over multiple treatment cycles. This report highlights the safety, efficacy and versatility of this treatment strategy. The data reveal the importance of inducing a strong anti‐tumour response for successfully affecting not only the treated tumours, but also non‐treated metastatic tumours. ECGT with IL12 pDNA plus chemotherapy is an effective strategy for treating multiple types of spontaneous cancers including large, refractory and multiple tumour burdens.  相似文献   

11.
12.
13.
The adjuvant activity of chicken interleukin‐12 (chIL‐12) protein has been described as similar to that of mammalian IL‐12. Recombinant chIL‐12 can be produced using several methods, but chIL‐12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL‐12 which stably expressed a fusion protein, chIL‐12 and enhanced green fluorescent protein (eGFP) connected by a (G4S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 106 DF1/chIL‐12 cells were inoculated in a T‐175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL?1 and 2,207 ± 3.28 ng mL?1, respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN‐γ, which was measured using an enzyme‐linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL‐12 cells with DMSO or producing chIL‐12 in a fusion protein form does not have adverse effects on the bioactivity of chIL‐12. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:641–649, 2015  相似文献   

14.
15.
16.
BACKGROUND: Patients with severe chronic and cyclic neutropenia, characterized by neutrophil numbers <500 cells/microl, are treated daily with recombinant granulocyte colony-stimulating factor (G-CSF). As an alternative delivery approach we investigated the ability of lentivirus vectors to provide sustained G-CSF expression. METHODS: Fischer rats were injected intramuscularly (IM) with vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus pRRL-CMV-G-CSF-SIN that encoded rat G-CSF cDNA regulated by the human cytomegalovirus (CMV) promoter and incorporated a self-inactivating (SIN) construct in the 3' long terminal repeat (LTR). Control rats received normal saline or lentivirus encoding the enhanced green fluorescent protein (eGFP). Rats were serially monitored for blood cell production and tissues assayed for provirus distribution. RESULTS: Rats receiving a single IM injection of lentivirus exhibited elevated neutrophil counts for 14 months. Virus administration of 6 x 10(7) infectious units induced sustained levels of neutrophil production having a mean +/- standard deviation (SD) of 5650 +/- 900 cells/microl and rats that received a 10-fold lower dose of virus showed mean neutrophil counts of 3340 +/- 740 cells/microl. These were significantly higher than the mean of control animals receiving saline or control lentivirus (1,760 +/- 540 cells/microl, P < 0.0001). White blood cell (WBC) counts were significantly elevated in treated over control animals (P < 0.0001). Hematocrits (P > 0.3), lymphocytes (P > 0.2) and platelets (P > 0.1) were not significantly different between control and treated animals. Genomic DNA from muscle at the injection sites was positive for provirus, whereas lung, spleen, liver, kidney and non-injected muscle samples were all negative, suggesting lack of virus spread. CONCLUSIONS: These studies indicate that lentivirus vectors administered IM provide sustained, therapeutic levels of neutrophils and suggest this approach to treat patients with severe and cyclic neutropenia.  相似文献   

17.
Nonviral vector–based gene therapy is a promising strategy for treating a myriad of diseases. Cell‐penetrating peptides are gaining increasing attention as vectors for nucleic acid delivery. However, most studies have focused more on the transfection efficiency of these vectors than on their specificity and toxicity. To obtain ideal vectors with high efficiency and safety, we constructed the vector stearyl‐TH by attaching a stearyl moiety to the N‐terminus of the acid‐activated cell penetrating peptide TH in this study. Under acidic conditions, stearyl‐TH could bind to and condense plasmids into nanoparticle complexes, which displayed significantly enhanced cellular uptake and transfection efficiencies. In contrast, stearyl‐TH lost the capacities of DNA binding and transfection at physiological pH. More importantly, stearyl‐TH and the complexes formed by stearyl‐TH and plasmids displayed no obvious toxicity at physiological pH. Consequently, the high transfection efficiency under acidic conditions and low toxicity make stearyl‐TH a potential nucleic acid delivery vector for gene therapy.  相似文献   

18.
19.
20.
Heat‐killed cells of Lactobacillus plantarum L‐137 are potent inducers of IL‐12 in vitro as well as in vivo and have been shown to have antiallergic, antitumor, and antiviral effects through this induction, which leads to a Th1 type immune response. To determine why L‐137 cells induce much greater IL‐12 production than the type strain Lactobacillus plantarum JCM1149, we examined the differences in their CW components. The L‐137 CW was found to have a higher alanine content and IL‐12p40 induction was significantly greater in comparison with JCM1149 CW, whereas peptidoglycans isolated from both strains did not cause IL‐12p40 induction. Because in purified CW preparations from gram‐positive bacteria, the presence of LTA, the major proinflammatory structure on these bacteria, has been known to have high alanine content, we investigated the responsiveness of both strains to anti‐LTA antibody by flow cytometry. L‐137 cells reacted more with anti‐LTA antibody than did JCM1149 cells. Furthermore, derivative strains of L‐137, cured of a specific plasmid pLTK11 of the 15 endogenous plasmids in wild‐type L‐137, had poor responsiveness to anti‐LTA antibody and showed lower IL‐12p40 inducing activity than the wild‐type L‐137 with pLTK11. Our results suggest that LTA expression on the cell surface causes IL‐12p40 induction, and that the above internal plasmid of L‐137 influences LTA synthesis and expression on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号