共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
Jonsson IM Juuti JT François P AlMajidi R Pietiäinen M Girard M Lindholm C Saller MJ Driessen AJ Kuusela P Bokarewa M Schrenzel J Kontinen VP 《PloS one》2010,5(12):e14209
Background
Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic Gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown.Methodology/Principal Findings
In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine.Conclusions/Significance
Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection. 相似文献5.
6.
Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity. 相似文献
7.
Staphylococcus aureus lactate‐ and malate‐quinone oxidoreductases contribute to nitric oxide resistance and virulence 下载免费PDF全文
Nicole A. Spahich Nicholas P. Vitko Lance R. Thurlow Brenda Temple Anthony R. Richardson 《Molecular microbiology》2016,100(5):759-773
Staphylococcus aureus is a Gram‐positive pathogen that resists many facets of innate immunity including nitric oxide (NO·). Staphylococcus aureus NO‐resistance stems from its ability to evoke a metabolic state that circumvents the negative effects of reactive nitrogen species. The combination of l ‐lactate and peptides promotes S. aureus growth at moderate NO‐levels, however, neither nutrient alone suffices. Here, we investigate the staphylococcal malate‐quinone and l ‐lactate‐quinone oxidoreductases (Mqo and Lqo), both of which are critical during NO‐stress for the combined utilization of peptides and l ‐lactate. We address the specific contributions of Lqo‐mediated l ‐lactate utilization and Mqo‐dependent amino acid consumption during NO‐stress. We show that Lqo conversion of l ‐lactate to pyruvate is required for the formation of ATP, an essential energy source for peptide utilization. Thus, both Lqo and Mqo are essential for growth under these conditions making them attractive candidates for targeted therapeutics. Accordingly, we exploited a modelled Mqo/Lqo structure to define the catalytic and substrate‐binding residues.We also compare the S. aureus Mqo/Lqo enzymes to their close relatives throughout the staphylococci and explore the substrate specificities of each enzyme. This study provides the initial characterization of the mechanism of action and the immunometabolic roles for a newly defined staphylococcal enzyme family. 相似文献
8.
Marcel P. Beier Takayuki Fujita Kazuhiro Sasaki Keiichi Kanno Miwa Ohashi Wataru Tamura Noriyuki Konishi Masahide Saito Fumi Imagawa Keiki Ishiyama Akio Miyao Tomoyuki Yamaya Soichi Kojima 《Physiologia plantarum》2019,167(1):75-89
Nitrogen is one of the most important elements for plant growth, and urea is one of the most frequently used nitrogen fertilizers worldwide. Besides the exogenously‐supplied urea to the soil, urea is endogenously synthesized during secondary nitrogen metabolism. Here, we investigated the contribution of a urea transporter, DUR3, to rice production using a reverse genetic approach combined with localization studies. Tos17 insertion lines for DUR3 showed a 50% yield reduction in hydroponic culture, and a 26.2% yield reduction in a paddy field, because of decreased grain filling. Because shoot biomass production and shoot total N was not reduced, insertion lines were disordered not only in nitrogen acquisition but also in nitrogen allocation. During seed development, DUR3 insertion lines accumulated nitrogen in leaves and could not sufficiently develop their panicles, although shoot and root dry weights were not significantly different from the wild‐type. The urea concentration in old leaf harvested from DUR3 insertion lines was lower than that in wild‐type. DUR3 promoter‐dependent β‐glucuronidase (GUS) activity was localized in vascular tissue and the midribs of old leaves. These results indicate that DUR3 contributes to nitrogen translocation and rice yield under nitrogen‐deficient and field conditions. 相似文献
9.
Irina V. Mikheyeva Jason M. Thomas Stacey L. Kolar Anna‐Rita Corvaglia Nadia GaÊa Stefano Leo Patrice Francois George Y. Liu Mamta Rawat Ambrose L. Cheung 《Molecular microbiology》2019,111(4):1039-1056
The intracellular redox environment of Staphylococcus aureus is mainly buffered by bacillithiol (BSH), a low molecular weight thiol. The identity of enzymes responsible for the recycling of oxidized bacillithiol disulfide (BSSB) to the reduced form (BSH) remains elusive. We examined YpdA, a putative bacillithiol reductase, for its role in maintaining intracellular redox homeostasis. The ypdA mutant showed increased levels of BSSB and a lower bacillithiol redox ratio vs. the isogenic parent, indicating a higher level of oxidative stress within the bacterial cytosol. We showed that YpdA consumed NAD(P)H; and YpdA protein levels were augmented in response to stress. Wild type strains overexpressing YpdA showed increased tolerance to oxidants and electrophilic agents. Importantly, YpdA overexpression in the parental strain caused an increase in BSH levels accompanied by a decrease in BSSB concentration in the presence of stress, resulting in an increase in bacillithiol redox ratio vs. the vector control. Additionally, the ypdA mutant exhibited decreased survival in human neutrophils (PMNs) as compared with the parent, while YpdA overexpression protected the resulting strain from oxidative stress in vitro and from killing by human neutrophils ex vivo. Taken together, these data present a new role for YpdA in S. aureus physiology and virulence through the bacillithiol system. 相似文献
10.
Cloning and sequences of inducible and constitutive macrolide resistance genes in Staphylococcus aureus that correspond to an ABC transporter 总被引:1,自引:0,他引:1
A restriction map was made and the DNA sequence was determined for a plasmid, pMC38, derived from the inducible macrolide resistance plasmid pEP2104, that showed constitutive resistance to PMS antibiotics (partial macrolide and streptogramin B antibiotics). A 5. 04 kb SalI-PstI fragment (fragment C) of pMC38, which encoded PMS resistance, was cloned into a shuttle vector, pRIT5, to yield pMR504. The transformant Staphylococcus aureus 4220 (pMR504) exhibited constitutive PMS resistance. Fragment C was subcloned to pUC19 in order to determine the DNA sequence. This sequence was consequently found to contain three open reading frames (ORF1-3), of which ORF3 corresponded to the 63 kDa membrane protein (MsrSA) that expressed PMS resistance. According to DNA sequence comparison of the control region of ORF3 in pMC38 and pEP2104, 44 nucleotides including RBS1 and the leader peptide (MTASMRLK) were deleted on plasmid pMC38. This suggests that the leader peptide is essential for the inducible expression of PMS resistance. 相似文献
11.
12.
13.
14.
Nfu facilitates the maturation of iron‐sulfur proteins and participates in virulence in Staphylococcus aureus 下载免费PDF全文
Ameya A. Mashruwala Yun Y. Pang Zuelay Rosario‐Cruz Harsimranjit K. Chahal Meredith A. Benson Laura A. Mike Eric P. Skaar Victor J. Torres William M. Nauseef Jeffrey M. Boyd 《Molecular microbiology》2015,95(3):383-409
The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron‐sulfur (Fe‐S) clusters, which are required for functional Fe‐S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe‐S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe‐S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as an Fe‐S cluster carrier, which aids in the maturation of Fe‐S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non‐incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe‐S cluster metabolism as an attractive antimicrobial target. 相似文献
15.
Staphylococcus aureus virulence attenuation and immune clearance mediated by a phage lysin‐derived protein 下载免费PDF全文
Hang Yang Jingjing Xu Wuyou Li Shujuan Wang Junhua Li Junping Yu Yuhong Li Hongping Wei 《The EMBO journal》2018,37(17)
New anti‐infective approaches are much needed to control multi‐drug‐resistant (MDR) pathogens, such as methicillin‐resistant Staphylococcus aureus (MRSA). Here, we found for the first time that a recombinant protein derived from the cell wall binding domain (CBD) of the bacteriophage lysin PlyV12, designated as V12CBD, could attenuate S. aureus virulence and enhance host immune defenses via multiple manners. After binding with V12CBD, S. aureus became less invasive to epithelial cells and more susceptible to macrophage killing. The expressions of multiple important virulence genes of S. aureus were reduced 2.4‐ to 23.4‐fold as response to V12CBD. More significantly, V12CBD could activate macrophages through NF‐κB pathway and enhance phagocytosis against S. aureus. As a result, good protections of the mice from MRSA infections were achieved in therapeutic and prophylactic models. These unique functions of V12CBD would render it a novel alternative molecule to control MDRS. aureus infections. 相似文献
16.
17.
《Peptides》2016
The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained activity under host physiological conditions of NaCl, MgCl2 and pH. However, when exposed to serum, LP5 lost activity. Furthermore, when increasing NaCl concentration and lowering pH, the peptide showed reduces activity. When investigating the tolerance mechanisms of S. aureus toward antimicrobial peptides, we found that LP5 was protease resistant. However, the dltA and vraF genes, involved in reducing the net anionic charge of the bacterial cell envelope and sensing of antimicrobial peptides, respectively, played a role in the tolerance of S. aureus against LP5. In addition, the exposure of S. aureus to sub-inhibitory concentrations of LP5 affected the expression of the major virulence factors of S. aureus, revealing a potential as anti-virulence compound. Thus, these results show how environmental factors affect the peptide efficiency and further add to the knowledge on how the peptide affects S. aureus, which is crucial information for designing new peptides for optimizing antimicrobial therapy. 相似文献
18.
Gunlg Rasmussen Berhane Asfaw Idosa Anders Bckman Stefan Monecke Kristoffer Strlin Eva Srndahl Bo Sderquist 《Microbiology and immunology》2019,63(12):487-499
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient. 相似文献
19.