共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate warming has been proposed as the main cause of the recent range shifts seen in many species. Although species' thermal tolerances are thought to play a key role in determining responses to climate change, especially in ectotherms, empirical evidence is still limited. We investigate the connection between species' thermal tolerances, elevational range and shifts in the lower elevational limit of dung beetle species (Coleoptera, Aphodiidea) in an upland region in the northwest of England. We measured thermal tolerances in the laboratory, and used current and historical distribution data to test specific hypotheses about the area's three dominant species, particularly the species most likely to suffer from warming: Agollinus lapponum. We found marked differences between species in their minimum and maximum thermal tolerance and in their elevational range and patterns of abundance. Overall, differences in thermal limits among species matched the abundance patterns along the elevation gradient expected if distributions were constrained by climate. Agollinus lapponum abundance increased with elevation and this species showed lower maximum and minimum thermal limits than Acrossus depressus, for which abundance declined with elevation. Consistent with lower tolerance to high temperature, we recorded an uphill retreat of the low elevation limit of A. lapponum (177 m over 57 yr) in line with the increase in summer temperature observed in the region over the same period. Moreover, this species has been replaced at low and mid‐elevations by the other two warm‐tolerant species (A. depressus and Agrilinus ater). Our results provide empirical evidence that species' thermal tolerance constrains elevational ranges and contributes to explain the observed responses to climate warming. A mechanistic understanding of how climate change directly affects species, such as the one presented here, will provide a robust base to inform predictions of how individual species and whole assemblages may change in the future. 相似文献
2.
Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity 下载免费PDF全文
Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate‐related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade‐off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change‐related range shifts and extinctions. 相似文献
3.
The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here, we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e., the capacity for surviving severe hypoxia) may determine present‐day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral‐dwelling gobies, Gobiodon histrio, and G. erythrospilus, with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40′S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). In contrast, the more equatorial species (G. histrio) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32–33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. 相似文献
4.
Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster 下载免费PDF全文
Many terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioural thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. We further report that embryos live closer to their upper thermal limits than adults – that is, thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting the dominance of heat‐tolerant alleles. Together, our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages to better predict adaptive limits. 相似文献
5.
Marine species in ambient low‐oxygen regions subject to double jeopardy impacts of climate change 下载免费PDF全文
We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20–40 years. A eurythermal depleted species already limited to shallow, oxygen‐rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep‐dwelling species (Greenland halibut) is projected to lose ~55% of its high‐density areas under the combined impacts of warming and oxygen depletion. Another deep‐dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high‐density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species‐by‐species basis at the scales most relevant to managers. Our study may provide a basis for work in other low‐oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change accelerates. 相似文献
6.
7.
Lei Chen Jian‐Guo Huang Qianqian Ma Heikki Hnninen Francine Tremblay Yves Bergeron 《Global Change Biology》2019,25(3):997-1004
Contrary to the generally advanced spring leaf unfolding under global warming, the effects of the climate warming on autumn leaf senescence are highly variable with advanced, delayed, and unchanged patterns being all reported. Using one million records of leaf phenology from four dominant temperate species in Europe, we investigated the temperature sensitivities of spring leaf unfolding and autumn leaf senescence (ST, advanced or delayed days per degree Celsius). The ST of spring phenology in all of the four examined species showed an increase and decrease during 1951–1980 and 1981–2013, respectively. The decrease in the ST during 1981–2013 appears to be caused by reduced accumulation of chilling units. As with spring phenology, the ST of leaf senescence of early successional and exotic species started to decline since 1980. In contrast, for late successional species, the ST of autumn senescence showed an increase for the entire study period from 1951 to 2013. Moreover, the impacts of rising temperature associated with global warming on spring leaf unfolding were stronger than those on autumn leaf senescence. The timing of leaf senescence was positively correlated with the timing of leaf unfolding during 1951–1980. However, as climate warming continued, the differences in the responses between spring and autumn phenology gradually increased, so that the correlation was no more significant during 1981–2013. Our results further suggest that since 2000, due to the decreased temperature sensitivity of leaf unfolding the length of the growing season has not increased any more. These finding needs to be addressed in vegetation models used for assessing the effects of climate change. 相似文献
8.
Thomas Wu Mohammad Arshad Imrit Zahra Movahedinia Jude Kong R. Iestyn Woolway Sapna Sharma 《Diversity & distributions》2023,29(2):300-315
Aim
Many freshwater fishes are migrating poleward to more thermally suitable habitats in response to warming climates. In this study, we aimed to identify which freshwater fishes are most sensitive to climatic changes and asked: (i) how fast are lakes warming? (ii) how fast are fishes moving? and (iii) are freshwater fishes tracking climate?Location
Ontario, Canada.Methods
We assembled a database containing time series data on climate and species occurrence data from 10,732 lakes between 1986 and 2017. We calculated the rate of lake warming and climate velocity for these lakes. Climate velocities were compared with biotic velocities, specifically the rate at which the northernmost extent of each species shifted north.Results
Lakes in Ontario warmed by 0.2°C decade−1 on average, at a climate velocity of 9.4 km decade−1 between 1986 and 2017. In response, some freshwater fishes have shifted their northern range boundaries with considerable interspecific variation ranging from species moving southwards at a rate of −58.9 km decade−1 to species ranges moving northwards at a rate of 83.6 km decade−1 over the same time period. More freshwater fish species are moving into northern lakes in Ontario than those being lost. Generally, predators are moving their range edges northwards, whereas prey fishes are being lost from northern lakes.Main Conclusions
The concurrent loss of cooler refugia, combined with antagonistic competitive and predatory interactions with the range expanding species, has resulted in many commercially important predators moving their range edges northwards, whereas prey species have contracted their northern range edge boundaries. Trophic partitioning of range shifts highlights a previously undocumented observation of the loss of freshwater fishes from lower trophic levels in response to climate-driven migrations. 相似文献9.
At the Cocos (Keeling) Islands in the north‐eastern Indian Ocean >592 fishes from at least 11 species died in a series of events in December 2007, January and February 2008 and April 2009. The dead fishes were from a wide range of taxonomic families, indicating that conditions exceeded the tolerances of a broad array of species. The 2007–2008 die‐off events occurred on the warmest and calmest days of a significantly warmer and calmer summer. Fishes died in the southern inshore areas of the coral atoll lagoon at survey sites where seawater temperature was highest (33–35° C) and dissolved oxygen was lowest (1·4–1·8 mg l?1). The water temperature at these fish‐kill survey sites (33–35° C) was significantly warmer than previous years (1997 to 2005, mean ±s.e. = 28·7 ± 0·1° C). Fishes probably died because they were unable to obtain the additional oxygen required for metabolism at higher temperatures. Repeated die‐off events over the last 130 years indicate that some fishes have not yet adapted to rises in seawater temperature. This study provides empirical evidence to support suggestions that differences in physiological tolerances to increasing sea temperatures may be important in determining the structure of future coral‐reef fish communities with respect to climate change. 相似文献
10.
By using freshwater fish stocking information from the Mexican government, this work described the current situation of the national stocking and its associated fishery policy. There is a lack of effective freshwater stocking programmes as a result of limited fisheries management, unharmonized fisheries regulations and institutional performance. The fry production has decreased from 140 to 20 million in the past 11 years. 相似文献
11.
Based on the analysis of six egg variables and incubation temperature of 65 temperate freshwater fish species, the possible relationships between oocyte diameter, incubation time and incubation temperature were reassessed and compared to the results obtained from marine fishes. Most freshwater species have eggs (mean ± s . d . 2·19 ± 1·52 mm) larger than marine species, that are chiefly demersal and develop stuck to various substrata, such as plants or rocks. A strong negative relationship was found between incubation time ( t , days) and incubation temperature ( T , ° C): t = 186·23e−0·197 T ( r 2 = 0·87). A strong dependence of incubation time on oocyte diameter ( Ø , mm) and incubation temperature was also found and was defined as: log10 t = 3·002 + 0·599 log10 Ø − 1·91 log10 ( T + 2), which explained 92% of the variance of the data set. Five major groups of species were defined based on the principal component analysis (PCA) of four quantitative variables. There were two distinct groups of salmonids, displaying demersal and non-adhesive eggs with a long incubation time at low temperature, the eggs of which required a high number of degree-days. There was a large group of species possessing small, mostly demersal and adhesive eggs developing at high temperature during a short period of time, and requiring a low number of degree-days. Between these two extremes, there was a fourth group displaying intermediate values and a fifth group including three species with large, adhesive and demersal eggs incubating at high temperatures during a short period of time. The burbot Lota lota displayed an unusual combination of variables compared to the remaining species in the data set. 相似文献
12.
13.
《Ecological Management & Restoration》2009,10(S1):S44-S52
Summary The potential impacts of climate change on threatened species, populations and communities are considered. It is suggested that minor changes to legislation will be required to address the consequences of movement of threatened species but that threatened species legislation will remain relevant as an important tool for prioritizing conservation actions. The importance of taking proactive steps now to permit future movement of species and communities across fragmented landscapes is emphasized. 相似文献
14.
F. Leprieur O. Beauchard B. Hugueny G. Grenouillet S. Brosse 《Diversity & distributions》2008,14(2):291-300
In recent years, there has been growing concern about how species invasions and extinctions could change the distinctiveness of formerly disparate fauna and flora, a process called biotic homogenization. In the present study, a null model of biotic of homogenization was developed and applied to the European freshwater fish fauna. We found that non-native fish species led to the greatest homogenization in south-western Europe and greatest differentiation in north-eastern Europe. Comparing these observed patterns to those expected by our null model empirically demonstrated that biotic homogenization is a non-random ecological pattern, providing evidence for previous assumptions. The place of origin of non-native species was also considered by distinguishing between exotic (originating from outside Europe) and translocated species (originating from within Europe). We showed that exotic and translocated species generated distinct geographical patterns of biotic homogenization across Europe because of their contrasting effects on the changes in community similarity among river basins. Translocated species promoted homogenization among basins, whereas exotic species tended to decrease their compositional similarity. Quantifying the individual effect of exotic and translocated species is therefore an absolute prerequisite to accurately assess the spatial dynamics of biotic homogenization. 相似文献
15.
The effect of water temperature on growth responses of three common seagrass fish species that co‐occur as juveniles in the estuaries in Sydney (34° S) but have differing latitudinal ranges was measured: Pelates sexlineatus (subtropical to warm temperate: 27–35° S), Centropogon australis (primarily subtropical to warm temperate: 24–37° S) and Acanthaluteres spilomelanurus (warm to cool temperate: below 32° S). Replicate individuals of each species were acclimated over a 7 day period in one of three temperature treatments (control: 22° C, low: 18° C and high: 26° C) and their somatic growth was assessed within treatments over 10 days. Growth of all three species was affected by water temperature, with the highest growth of both northern species (P. sexlineatus and C. australis) at 22 and 26° C, whereas growth of the southern ranging species (A. spilomelanurus) was reduced at temperatures higher than 18° C, suggesting that predicted increase in estuarine water temperatures through climate change may change relative performance of seagrass fish assemblages. 相似文献
16.
17.
Quantitative estimations of spring migrating fish have been made in the mouth part of the small coastal river Ängerån which flows into the northern Bothnian Sea (63°35N, 19°50E). In 1981 nearly 3 000 fish were counted ascending to the spawning grounds in the lower reaches of the Ängerån. These species, such as pike, perch, roach and ide, adapted to the oligohaline environment in the Bothnian Sea for most of the year, migrate to spawn in the coastal stream. The reason for these migrations can be interpreted to indicate that the Ängerån offers more favourable water temperature conditions at spawning time compared with the Bothnian Sea, which is ice-covered up to the beginning of May. The most important result of the investigation in the Ängerån is that these fish species, in the same way as the salmonids, return to theirhome-stream every year as adults.Andreasson & Petersson (1982) listed 69 species of fish in the oligohaline Gulf of Bothnia (Table 1) where salinity varies from 2 near the mouth of the River Torneäly to 6 in the vicinity of the Åland Islands (Fig. 1). The fish fauna comprises freshwater and marine species, fish migrating between brackish and freshwater rivers and streams, and recently introduced non-endogenous species.Andreasson & Petersson (1982) designated only five species as anadromous migrators, whereas our studies show that 11 species migrate from the sea to spawn in the Ängerån, a small river discharging into the northern Bothnian Sea (Fig. 2). Earlier reports on these migrations have been given by Berglund (1978) and Johnson (1978, 1982) and for another small stream in the area by Berg (1982).The present paper describes the annual spring migrations of pike, perch, roach and ide between the northern Bothnian Sea and the Ängerån, for the year 1981. 相似文献
18.
Robert Guralnick 《Global Ecology and Biogeography》2006,15(5):505-518
Aim Elevation and climate ranges across latitude experienced by 21 wide‐ranging mammal species in western North America were summarized to examine two questions: (1) do populations in the northern and southern portions of a species’ range experience different climates or are environments selected to remain similar to climates at the core of ranges; and (2) how do species’ elevational ranges, experienced temperature seasonality and temperature ranges change across latitude? Given the larger effects of climate oscillations in the north vs. the south, a predicted outcome is for species to conserve climate niches across latitude and to show reduced climate and elevation ranges in the north. An alternative outcome is latitudinal niche diversification and increased climate variation in the north. Location Western North America. Methods The questions above were examined using a combination of species occurrence data bases, climate data bases, simple summaries of means and standard deviations and by testing summaries against random distributions across latitude for 21 mammal species from a variety of orders. Results The results showed that: (i) most species conserve their niche strongly or weakly given overall temperature gradients from north to south; (ii) seasonality experienced by species is relatively static until the highest latitudes despite directional trends across the region; and (iii) the elevation range and temperature variation that species experience decreases from south to north. Main conclusions Populations at range edges appear to partition environments to remain closer to temperature values similar to those at the core of the range. In addition, seasonality is not a likely explanatory factor of genetic diversity in latitudinal gradients. The data are instead more consistent with predictions that a combination of higher gene‐flow, increasing environmental instability and decreasing elevation gradients in the north compared to the south may lead to negative correlations between latitude and species’ climate variation. The results corroborate risks faced by northern mammal populations to global climate changes. 相似文献
19.
Invasive species are one of the most significant problem in freshwater ecosystems. Most common non-native freshwater species in Turkish freshwater fish fauna are Prussian Carp (Carassius gibelio), North African Catfish (Clarias gariepinus), Nile Tilapia (Oreochromis niloticus) and Topmouth Gudgeon (Pseudorasbora parva).Recent studies showed that environmental DNA could be used to detect target species inhabiting the ecosystem with higher precision and less effort compared to traditional field surveys. In this study, eDNA approach was used to investigate non-native freshwater fish species from fifteen different locations of Upper Sakarya Basin. eDNA was successfully extracted from the water samples of locations where the species were visually observed. Mean amplification rate of eDNA was calculated as 77.03%.This study is the first environmental DNA study used in detection of four of the most common invasive freshwater fish species. Results clearly indicating that eDNA surveys could be used as an important molecular tool to monitor invasive fish species in freshwater ecosystems. 相似文献
20.
Predicting the effects of climate change on Earth's biota becomes even more challenging when acknowledging that most species have life cycles consisting of multiple stages, each of which may respond differently to extreme environmental conditions. There is currently no clear consensus regarding which stages are most susceptible to increasing environmental stress, or ‘climate extremes’. We used a meta‐analytic approach to quantify variation in responses to environmental stress across multiple life stages of marine invertebrates. We identified 287 experiments in 29 papers which examined the lethal thresholds of multiple life stages (embryo, larva, juvenile and adult) of both holoplanktonic and meroplanktonic marine invertebrates subjected to the same experimental conditions of warming, acidification and hypoxia stress. Most studies considered short acute exposure to stressors. We calculated effect sizes (log response ratio) for each life stage (unpaired analysis) and the difference in effect sizes between stages of each species (paired analysis) included in each experiment. In the unpaired analysis, all significant responses were negative, indicating that warming, acidification and hypoxia tended to increase mortality. Furthermore, embryos, larvae and juveniles were more negatively affected by warming than adults. The paired analysis revealed that, when subjected to the same experimental conditions, younger life stages were more negatively affected by warming than older life stages, specifically among pairings of adults versus juveniles and larvae versus embryos. Although responses to warming are well documented, few studies of the effects of acidification and hypoxia met the criteria for inclusion in our analyses. Our results suggest that while most life stages will be negatively affected by climate change, younger stages of marine invertebrates are more sensitive to extreme heating events. 相似文献