首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Salmonella flagellar motor consists of a rotor and about a dozen stator elements. Each stator element, consisting of MotA and MotB, acts as a proton channel to couple proton flow with torque generation. A highly conserved Asp33 residue of MotB is directly involved in the energy coupling mechanism, but it remains unknown how it carries out this function. Here, we show that the MotB(D33E) mutation dramatically alters motor performance in response to changes in external load. Rotation speeds of the MotA/B(D33E) and MotA(V35F)/B(D33E) motors were markedly slower than the wild‐type motor and fluctuated considerably at low load but not at high load, whereas the rotation rate of the wild‐type motor was stable at any load. At low load, pausing events were frequently observed in both mutant motors. The proton conductivities of these mutant stator channels in their ‘unplugged’ forms were only half of the conductivity of the wild‐type channel. These results suggest that the D33E mutation induces a load‐dependent inactivation of the MotA/B complex. We propose that the stator element is a load‐sensitive proton channel that efficiently couples proton translocation with torque generation and that Asp33 of MotB is critical for this co‐ordinated proton translocation.  相似文献   

2.
The bacterial flagellar motor is an intricate nanomachine which converts ion gradients into rotational movement. Torque is created by ion‐dependent stator complexes which surround the rotor in a ring. Shewanella oneidensis MR‐1 expresses two distinct types of stator units: the Na+‐dependent PomA4B2 and the H+‐dependent MotA4B2. Here, we have explored the stator unit dynamics in the MR‐1 flagellar system by using mCherry‐labeled PomAB and MotAB units. We observed a total of between 7 and 11 stator units in each flagellar motor. Both types of stator units exchanged between motors and a pool of stator complexes in the membrane, and the exchange rate of MotAB, but not of PomAB, units was dependent on the environmental Na+‐levels. In 200 mM Na+, the numbers of PomAB and MotAB units in wild‐type motors was determined to be about 7:2 (PomAB:MotAB), shifting to about 6:5 without Na+. Significantly, the average swimming speed of MR‐1 cells at low Na+ conditions was increased in the presence of MotAB. These data strongly indicate that the S. oneidensis flagellar motors simultaneously use H+ and Na+ driven stators in a configuration governed by MotAB incorporation efficiency in response to environmental Na+ levels.  相似文献   

3.
The bacterial flagellar motor powers the rotation that propels the swimming bacteria. Rotational torque is generated by harnessing the flow of ions through ion channels known as stators which couple the energy from the ion gradient across the inner membrane to rotation of the rotor. Here, we used error‐prone PCR to introduce single point mutations into the sodium‐powered Vibrio alginolyticus/Escherichia coli chimeric stator PotB and selected for motors that exhibited motility in the presence of the sodium‐channel inhibitor phenamil. We found single mutations that enable motility under phenamil occurred at two sites: (i) the transmembrane domain of PotB, corresponding to the TM region of the PomB stator from V. alginolyticus and (ii) near the peptidoglycan binding region that corresponds to the C‐terminal region of the MotB stator from E. coli. Single cell rotation assays confirmed that individual flagellar motors could rotate in up to 100 µM phenamil. Using phylogenetic logistic regression, we found correlation between natural residue variation and ion source at positions corresponding to PotB F22Y, but not at other sites. Our results demonstrate that it is not only the pore region of the stator that moderates motility in the presence of ion‐channel blockers.  相似文献   

4.
The bacterial flagellar motor is one of the most complex and sophisticated nanomachineries in nature. A duty ratio D is a fraction of time that the stator and the rotor interact and is a fundamental property to characterize the motor but remains to be determined. It is known that the stator units of the motor bind to and dissociate from the motor dynamically to control the motor torque depending on the load on the motor. At low load, at which the kinetics such as proton translocation speed limits the rotation rate, the dependency of the rotation rate on the number of stator units N implies D: the dependency becomes larger for smaller D. Contradicting observations supporting both the small and large D have been reported. A dilemma is that it is difficult to explore a broad range of N at low load because the stator units easily dissociate, and N is limited to one or two at vanishing load. Here, we develop an electrorotation method to dynamically control the load on the flagellar motor of Salmonella with a calibrated magnitude of the torque. By instantly reducing the load for keeping N high, we observed that the speed at low load depends on N, implying a small duty ratio. We recovered the torque-speed curves of individual motors and evaluated the duty ratio to be 0.14 ± 0.04 from the correlation between the torque at high load and the rotation rate at low load.  相似文献   

5.
Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such asBacillus subtilis andEscherichia coli and the other is the Na+-driven type found in alkalophilicBacillus and marineVibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.  相似文献   

6.
Bacteria can be propelled in liquids by flagellar filaments that are attached to and moved by flagellar motors. These motors are rotary nanomachines that use the electrochemical potential from ion gradients. The motor can spin in both directions with specific proteins regulating the direction in response to chemotactic stimuli. Here we investigated the structure of flagellar motors of Borrelia spirochetes, the causative agents of Lyme disease in humans. We revealed the structure of the motor complex at 4.6-nm resolution by sub-volume averaging of cryo-electron tomograms and subsequently imposing rotational symmetry. This allowed direct visualisation of individual motor components, the connection between the stator and the peptidoglycan as well as filamentous linkers between the stator and the rod. Two different motor assemblies seem to co-exist at a single bacterial pole. While most motors were completely assembled, a smaller fraction appeared to lack part of the C-ring, which plays a role in protein export and switching the directionality of rotation. Our data suggest a novel mechanism that bacteria may use to control the direction of movement.  相似文献   

7.
Bacterial flagella responsible for motility are driven by rotary motors powered by the electrochemical potential difference of specific ions across the cytoplasmic membrane. The stator of proton-driven flagellar motor converts proton influx into mechanical work. However, the energy conversion mechanism remains unclear. Here, we show that the motor is sensitive to intracellular proton concentration for high-speed rotation at low load, which was considerably impaired by lowering intracellular pH, while zero-speed torque was not affected. The change in extracellular pH did not show any effect. These results suggest that a high intracellular proton concentration decreases the rate of proton translocation and therefore that of the mechanochemical reaction cycle of the motor but not the actual torque generation step within the cycle by the stator-rotor interactions.  相似文献   

8.
The flagellar machinery is a highly complex organelle composed of a free rotating flagellum and a fixed stator that converts energy into movement. The assembly of the flagella and the stator requires interactions with the peptidoglycan layer through which the organelle has to pass for externalization. Lytic transglycosylases are peptidoglycan degrading enzymes that cleave the sugar backbone of peptidoglycan layer. We show that an endogenous lytic transglycosylase is required for full motility of Helicobacter pylori and colonization of the gastric mucosa. Deficiency of motility resulted from a paralysed phenotype implying an altered ability to generate flagellar rotation. Similarly, another Gram‐negative pathogen Salmonella typhimurium and the Gram‐positive pathogen Listeria monocytogenes required the activity of lytic transglycosylases, Slt or MltC, and a glucosaminidase (Auto), respectively, for full motility. Furthermore, we show that in absence of the appropriate lytic transglycosylase, the flagellar motor protein MotB from H. pylori does not localize properly to the bacterial pole. We present a new model involving the maturation of the surrounding peptidoglycan for the proper anchoring and functionality of the flagellar motor.  相似文献   

9.
The bacterial flagellar motor is a rotary motor in the cell envelope of bacteria that couples ion flow across the cytoplasmic membrane to torque generation by independent stators anchored to the cell wall. The recent observation of stepwise rotation of a Na+-driven chimeric motor in Escherichia coli promises to reveal the mechanism of the motor in unprecedented detail. We measured torque-speed relationships of this chimeric motor using back focal plane interferometry of polystyrene beads attached to flagellar filaments in the presence of high sodium-motive force (85 mM Na+). With full expression of stator proteins the torque-speed curve had the same shape as those of wild-type E. coli and Vibrio alginolyticus motors: the torque is approximately constant (at ∼ 2200 pN nm) from stall up to a “knee” speed of ∼ 420 Hz, and then falls linearly with speed, extrapolating to zero torque at ∼ 910 Hz. Motors containing one to five stators generated ∼ 200 pN nm per stator at speeds up to ∼ 100 Hz/stator; the knee speed in 4- and 5-stator motors is not significantly slower than in the fully induced motor. This is consistent with the hypothesis that the absolute torque depends on stator number, but the speed dependence does not. In motors with point mutations in either of two critical conserved charged residues in the cytoplasmic domain of PomA, R88A and R232E, the zero-torque speed was reduced to ∼ 400 Hz. The torque at low speed was unchanged by mutation R88A but was reduced to ∼ 1500 pN nm by R232E. These results, interpreted using a simple kinetic model, indicate that the basic mechanism of torque generation is the same regardless of stator type and coupling ion and that the electrostatic interaction between stator and rotor proteins is related to the torque-speed relationship.  相似文献   

10.
Thomas Vorburger  Urs Ziegler  Julia Steuber 《BBA》2009,1787(10):1198-1204
The flagellar motor consists of a rotor and a stator and couples the flux of cations (H+ or Na+) to the generation of the torque necessary to drive flagellum rotation. The inner membrane proteins PomA and PomB are stator components of the Na+-driven flagellar motor from Vibrio cholerae. Affinity-tagged variants of PomA and PomB were co-expressed in trans in the non-motile V. cholerae pomAB deletion strain to study the role of the conserved D23 in the transmembrane helix of PomB. At pH 9, the D23E variant restored motility to 100% of that observed with wild type PomB, whereas the D23N variant resulted in a non-motile phenotype, indicating that a carboxylic group at position 23 in PomB is important for flagellum rotation. Motility tests at decreasing pH revealed a pronounced decline of flagellar function with a motor complex containing the PomB-D23E variant. It is suggested that the protonation state of the glutamate residue at position 23 determines the performance of the flagellar motor by altering the affinity of Na+ to PomB. The conserved aspartate residue in the transmembrane helix of PomB and its H+-dependent homologs might act as a ligand for the coupling cation in the flagellar motor.  相似文献   

11.
The bacterial flagellar motor is a tiny molecular machine that uses a transmembrane flux of H(+) or Na(+) ions to drive flagellar rotation. In proton-driven motors, the membrane proteins MotA and MotB interact via their transmembrane regions to form a proton channel. The sodium-driven motors that power the polar flagellum of Vibrio species contain homologs of MotA and MotB, called PomA and PomB. They require the unique proteins MotX and MotY. In this study, we investigated how ion selectivity is determined in proton and sodium motors. We found that Escherichia coli MotA/B restore motility in DeltapomAB Vibrio alginolyticus. Most hypermotile segregants isolated from this weakly motile strain contain mutations in motB. We constructed proteins in which segments of MotB were fused to complementary portions of PomB. A chimera joining the N terminus of PomB to the periplasmic C terminus of MotB (PotB7(E)) functioned with PomA as the stator of a sodium motor, with or without MotX/Y. This stator (PomA/PotB7(E)) supported sodium-driven motility in motA or motB E.coli cells, and the swimming speed was even higher than with the original stator of E.coli MotA/B. We conclude that the cytoplasmic and transmembrane domains of PomA/B are sufficient for sodium-driven motility. However, MotA expressed with a B subunit containing the N terminus of MotB fused to the periplasmic domain of PomB (MomB7(E)) supported sodium-driven motility in a MotX/Y-dependent fashion. Thus, although the periplasmic domain of PomB is not necessary for sodium-driven motility in a PomA/B motor, it can convert a MotA/B proton motor into a sodium motor.  相似文献   

12.
13.
The proton‐driven flagellar motor of Salmonella enterica can accommodate a dozen MotA/B stators in a load‐dependent manner. The C‐terminal periplasmic domain of MotB acts as a structural switch to regulate the number of active stators in the motor in response to load change. The cytoplasmic loop termed MotAC is responsible for the interaction with a rotor protein, FliG. Here, to test if MotAC is responsible for stator assembly around the rotor in a load‐dependent manner, we analyzed the effect of MotAC mutations, M76V, L78W, Y83C, Y83H, I126F, R131L, A145E and E155K, on motor performance over a wide range of external load. All these MotAC mutations reduced the maximum speed of the motor near zero load, suggesting that they reduce the rate of conformational dynamics of MotAC coupled with proton translocation through the MotA/B proton channel. Dissociation of the stators from the rotor by decrease in the load was facilitated by the M76V, Y83H and A145E mutations compared to the wild‐type motor. The E155K mutation reduced the number of active stators in the motor from 10 to 6 under extremely high load. We propose that MotAC is responsible for load‐dependent assembly and disassembly dynamics of the MotA/B stator units.  相似文献   

14.
Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar–stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.  相似文献   

15.
Rotational characteristics of Na+-driven flagellar motor in the presence and absence of coupling ion were analyzed by electrorotation method. The motor rotated spontaneously in the presence of Na+, and the rotation accelerated or decelerated following the direction of the applied external torque. The spontaneous motor rotation was inhibited by removal of external Na+, however, the motor could be forcibly rotated by relatively small external torque applied by the electrorotation apparatus. The observed characteristic of the motor was completely different from that of ATP-driven motor systems, which form rigor bond when their energy source, ATP, is absent. The internal resistance of the flagellar motor increased significantly when the coupling ion could not access the inside of the motor, suggesting that the interaction between the rotor and the stator is changed by the binding of the coupling ion to the internal sites of the motor.  相似文献   

16.
In Escherichia coli, rotation of the flagellar motor has been shown to depend upon electrostatic interactions between charged residues of the stator protein MotA and the rotor protein FliG. These charged residues are conserved in the Na+-driven polar flagellum of Vibrio alginolyticus, but mutational studies in V. alginolyticus suggested that they are relatively unimportant for motor rotation. The electrostatic interactions detected in E. coli therefore might not be a general feature of flagellar motors, or, alternatively, the V. alginolyticus motor might rely on similar interactions but incorporate additional features that make it more robust against mutation. Here, we have carried out a comparative study of chimeric motors that were resident in E. coli but engineered to use V. alginolyticus stator components, rotor components, or both. Charged residues in the V. alginolyticus rotor and stator proteins were found to be essential for motor rotation when the proteins functioned in the setting of the E. coli motor. Patterns of synergism and suppression in rotor/stator double mutants indicate that the V. alginolyticus proteins interact in essentially the same way as their counterparts in E. coli. The robustness of the rotor-stator interface in V. alginolyticus is in part due to the presence of additional charged residues in PomA but appears mainly due to other factors, because an E. coli motor using both rotor and stator components from V. alginolyticus remained sensitive to mutation. Motor function in V. alginolyticus may be enhanced by the proteins MotX and MotY.  相似文献   

17.
18.
The bacterial flagellar motor accommodates ten stator units around the rotor to produce large torque at high load. But when external load is low, some previous studies showed that a single stator unit can spin the rotor at the maximum speed, suggesting that the maximum speed does not depend on the number of active stator units, whereas others reported that the speed is also dependent on the stator number. To clarify these two controversial observations, much more precise measurements of motor rotation would be required at external load as close to zero as possible. Here, we constructed a Salmonella filament-less mutant that produces a rigid, straight, twice longer hook to efficiently label a 60 nm gold particle and analyzed flagellar motor dynamics at low load close to zero. The maximum motor speed was about 400 Hz. Large speed fluctuations and long pausing events were frequently observed, and they were suppressed by either over-expression of the MotAB stator complex or increase in the external load, suggesting that the number of active stator units in the motor largely fluctuates near zero load. We conclude that the lifetime of the active stator unit becomes much shorter when the motor operates near zero load.  相似文献   

19.
Bacterial flagellar motors obtain energy for rotation from the membrane gradient of protons or, in some species, sodium ions. The molecular mechanism of flagellar rotation is not understood. MotA and MotB are integral membrane proteins that function in proton conduction and are believed to form the stator of the motor. Previous mutational studies identified two conserved proline residues in MotA (Pro 173 and Pro 222 in the protein from Escherichia coli) and a conserved aspartic acid residue in MotB (Asp 32) that are important for function. Asp 32 of MotB probably forms part of the proton path through the motor. To learn more about the roles of the conserved proline residues of MotA, we examined motor function in Pro 173 and Pro 222 mutants, making measurements of torque at high load, speed at low and intermediate loads, and solvent-isotope effects (D2O versus H2O). Proton conduction by wild-type and mutant MotA-MotB channels was also assayed, by a growth defect that occurs upon overexpression. Several different mutations of Pro 173 reduced the torque of the motor under high load, and a few prevented motor rotation but still allowed proton flow through the MotA-MotB channels. These and other properties of the mutants suggest that Pro 173 has a pivotal role in coupling proton flow to motor rotation and is positioned in the channel near Asp 32 of MotB. Replacements of Pro 222 abolished function in all assays and were strongly dominant. Certain Pro 222 mutant proteins prevented swimming almost completely when expressed at moderate levels in wild-type cells. This dominance might be caused by rotor-stator jamming, because it was weaker when FliG carried a mutation believed to increase rotor-stator clearance. We propose a mechanism for torque generation, in which specific functions are suggested for the proline residues of MotA and Asp32 of MotB.  相似文献   

20.
Using self-trapped Escherichia coli bacteria that have intact flagellar bundles on glass surfaces, we study statistical fluctuations of cell-body rotation in a steady (unstimulated) state. These fluctuations underline direction randomization of bacterial swimming trajectories and plays a fundamental role in bacterial chemotaxis. A parallel study is also conducted using a classical rotation assay in which cell-body rotation is driven by a single flagellar motor. These investigations allow us to draw the important conclusion that during periods of counterclockwise motor rotation, which contributes to a run, all flagellar motors are strongly correlated, but during the clockwise period, which contributes to a tumble, individual motors are uncorrelated in long times. Our observation is consistent with the physical picture that formation and maintenance of a coherent flagellar bundle is provided by a single dominant flagellum in the bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号