Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line‐derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post‐natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post‐ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret‐expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4‐reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions. 相似文献
Traumatic brain injury (TBI) results in significant inflammation which contributes to the evolving pathology. Previously, we have demonstrated that cyclic AMP (cAMP), a molecule involved in inflammation, is down‐regulated after TBI. To determine the mechanism by which cAMP is down‐regulated after TBI, we determined whether TBI induces changes in phosphodiesterase (PDE) expression. Adult male Sprague Dawley rats received moderate parasagittal fluid‐percussion brain injury (FPI) or sham injury, and the ipsilateral, parietal cortex was analyzed by western blotting. In the ipsilateral parietal cortex, expression of PDE1A, PDE4B2, and PDE4D2, significantly increased from 30 min to 24 h post‐injury. PDE10A significantly increased at 6 and 24 h after TBI. Phosphorylation of PDE4A significantly increased from 6 h to 7 days post‐injury. In contrast, PDE1B, PD4A5, and PDE4A8 significantly decreased after TBI. No changes were observed with PDE1C, PDE3A, PDE4B1/3, PDE4B4, PDE4D3, PDE4D4, PDE8A, or PDE8B. Co‐localization studies showed that PDE1A, PDE4B2, and phospho‐PDE4A were neuronally expressed, whereas PDE4D2 was expressed in neither neurons nor glia. These findings suggest that therapies to reduce inflammation after TBI could be facilitated with targeted therapies, in particular for PDE1A, PDE4B2, PDE4D2, or PDE10A. 相似文献
The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization. 相似文献
Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. Tumour necrosis factor ligand superfamily member 12 (TNFSF12) also known as TNF-related weak inducer of apoptosis (TWEAK) is a proinflammatory cytokine that participates in atherosclerotic plaque development, but its role in plaque stability remains unclear. Using two different approaches, genetic deletion of TNFSF12 and treatment with a TWEAK blocking mAb in atherosclerosis-prone mice, we have analysed the effect of TWEAK inhibition on atherosclerotic plaques progression and stability. Mice lacking both TNFSF12 and Apolipoprotein E (TNFSF12−/−ApoE−/−) exhibited a diminished atherosclerotic burden and lesion size in their aorta. Advanced atherosclerotic plaques of TNFSF12−/−ApoE−/− or anti-TWEAK treated mice exhibited an increase collagen/lipid and vascular smooth muscle cell/macrophage ratios compared with TNFSF12+/+ApoE−/− control mice, reflecting a more stable plaque phenotype. These changes are related with two different mechanisms, reduction of the inflammatory response (chemokines expression and secretion and nuclear factor kappa B activation) and decrease of metalloproteinase activity in atherosclerotic plaques of TNFSF12−/−ApoE−/−. A similar phenotype was observed with anti-TWEAK mAb treatment in TNFSF12+/+ApoE−/− mice. Brachiocephalic arteries were also examined since they exhibit additional features akin to human atherosclerotic plaques associated with instability and rupture. Features of greater plaque stability including augmented collagen/lipid ratio, reduced macrophage content, and less presence of lateral xanthomas, buried caps, medial erosion, intraplaque haemorrhage and calcium content were present in TNFSF12−/−ApoE−/− or anti-TWEAK treatment in TNFSF12+/+ApoE−/− mice. Overall, our data indicate that anti-TWEAK treatment has the capacity to diminish proinflamatory response associated with atherosclerotic plaque progression and to alter plaque morphology towards a stable phenotype. 相似文献
Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short‐ (acute) or long‐term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute‐exercise animals and the opposite was found in the chronic‐exercise animals. The binding of [35S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli.
Since the start of the 20th century, many invasive alien species (IAS) have spread rapidly around the world, causing serious threats to economies, societies and the environment. Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is an important quarantine insect species in many countries that spread around the world over the last century. This review collected information on the distribution of B. dorsalis to explore the patterns of its invasion expansion. We found B. dorsalis to be distributed in 75 countries (comprised of 124 geographical distribution regions: provinces or states) in Asia, Africa, North America, South America and Oceania up to 2017. Asia and Africa were the most represented regions, accounting for 86.3% of the total number of countries. From 1910 to 1990, B. dorsalis was only found in five countries, but in the last three decades, it has experienced a sharp increase in its rate of spread, invading 70 more countries. Global temperature anomaly has significantly positive correlation with the spread of B. dorsalis. The results of this review provide a theoretical basis for understanding and predicting the continued spread of B. dorsalis under global changes. 相似文献
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex‐dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism. 相似文献
Fifty‐two eyes were collected and analyzed to estimate ages of 42 bowhead whales using the aspartic acid racemization aging technique. Between‐eye and within‐eye variance components for the ratio of the D and L optical isomers (D/L ratio) were estimated via analysis of variance using multiple measurements from nine whales with both eyes sampled and analyzed. For whales with more than one (D/L)act value, an inverse variance weighted average of the values was used as (D/L)act for the whale. Racemization rate (kAsp) and D/L ratio at birth (D/L)0 were estimated using (D/L)act from 27 bowhead whales with age estimates based on baleen or ovarian corpora data and two term fetuses. The estimates were kAsp = 0.977 × 10?3/yr and (D/L)0 = 0.0250. The nonlinear least squares analysis that produced these estimates also estimated female age at sexual maturity as ASM = 25.86 yr. SE(age) was estimated via a bootstrap that took into account the SE of (D/L)act and the variances and covariance of kAsp and (D/L)0. One male exceeded 100 yr of age; the oldest female was 88. A strong linear relationship between kAsp and body temperature was estimated by combining bowhead data with independent data from studies of humans and fin whales. Using this relationship, we estimated kAsp and ASM for North Atlantic minke whales. 相似文献
Palm oil is used in various valued commodities and is a large global industry worth over US$ 50 billion annually. Oil palms (OP) are grown commercially in Indonesia and Malaysia and other countries within Latin America and Africa. The large‐scale land‐use change has high ecological, economic, and social impacts. Tropical countries in particular are affected negatively by climate change (CC) which also has a detrimental impact on OP agronomy, whereas the cultivation of OP increases CC. Amelioration of both is required. The reduced ability to grow OP will reduce CC, which may allow more cultivation tending to increase CC, in a decreasing cycle. OP could be increasingly grown in more suitable regions occurring under CC. Enhancing the soil fauna may compensate for the effect of CC on OP agriculture to some extent. The effect of OP cultivation on CC may be reduced by employing reduced emissions from deforestation and forest degradation plans, for example, by avoiding illegal fire land clearing. Other ameliorating methods are reported herein. More research is required involving good management practices that can offset the increases in CC by OP plantations. Overall, OP‐growing countries should support the Paris convention on reducing CC as the most feasible scheme for reducing CC. 相似文献
Research on stem cells has developed as one of the most promising areas of neurobiology. In the beginning of the 1990s, neurogenesis in the adult brain was indisputably accepted, eliciting great research efforts. Neural stem cells in the adult mammalian brain are located in the ‘neurogenic’ areas of the subventricular and subgranular zones. Nevertheless, many reports indicate that they subsist in other regions of the adult brain. Adult neural stem cells have arisen considerable interest as these studies can be useful to develop new methods to replace damaged neurons and treat severe neurological diseases such as neurodegeneration, stroke or spinal cord lesions. In particular, a promising field is aimed at stimulating or trigger a self‐repair system in the diseased brain driven by its own stem cell population. Here, we will revise the latest findings on the characterization of active and quiescent adult neural stem cells in the main regions of neurogenesis and the factors necessary to maintain their active and resting states, stimulate migration and homing in diseased areas, hoping to outline the emerging knowledge for the promotion of regeneration in the brain based on endogenous stem cells. 相似文献
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3? concentration was always 2.5 mmol · L?1) or constant (NO3? concentration varied to maintain the same Ci/NO3? ratio at all pCO2) Ci/NO3? ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2. The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci/NO3? ratio. In the variable Ci/NO3? conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci/NO3?. Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci/NO3? ratio in the environment and not only by the pCO2, both with respect to the size of the main organic pools and the composition of the expressed proteome. 相似文献
Immune defences and the maintenance of immunological homeostasis in the face of pathogenic and commensal microbial exposures are channelled by innate antimicrobial pattern recognition receptors (PRRs) such as toll‐like receptors (TLRs). Whilst PRR‐mediated response programmes are the result of long‐term host‐pathogen or host–commensal co‐evolutionary dynamics involving microbes, an additional possibility is that macroparasitic co‐infections may be a significant modifier of such interactions. We demonstrate experimentally that macroparasites (the model gastrointestinal nematode, Heligmosomoides) at peripheral sites of infection cause substantial alteration of the expression and function of TLRs at a systemic level (in cultured splenocytes), predominantly up‐regulating TLR2, TLR4 and TLR9‐mediated cytokine responses at times of high standing worm burdens. We consistently observed such effects in BALB/c and C57BL/6 mice under single‐pulse and trickle exposures to Heligmosomoides larvae and in SWR and CBA mice under single‐pulse exposures. A complementary long‐term survey of TLR2‐mediated tumour necrosis factor‐alpha responses in wild wood mice (Apodemus sylvaticus) was consistent with substantial effects of macroparasites under some environmental conditions. A general pattern, though, was for the associations of macroparasites with TLR function to be temporally dynamic and context‐dependent: varying with different conditions of infection exposure in the field and laboratory and with host genetic strain in the laboratory. These results are compelling evidence that macroparasites are a major and dynamic modifier of systemic innate antimicrobial responsiveness in naturally occurring mammals and thus likely to be an important influence on the interaction between microbial exposures and the immune system. 相似文献
The introduction of new crops to agroecosystems can change the chemical composition of the atmosphere by altering the amount and type of plant‐derived biogenic volatile organic compounds (BVOCs). BVOCs are produced by plants to aid in defense, pollination, and communication. Once released into the atmosphere, they have the ability to influence its chemical and physical properties. In this study, we compared BVOC emissions from three potential bioenergy crops and estimated their theoretical impacts on bioenergy agroecosystems. The crops chosen were miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), and an assemblage of prairie species (mix of ~28 species). The concentration of BVOCs was different within and above plant canopies. All crops produced higher levels of emissions at the upper canopy level. Miscanthus produced lower amounts of volatiles compared with other grasses. The chemical composition of volatiles differed significantly among plant communities. BVOCs from miscanthus were depleted in terpenoids relative to the other vegetation types. The carbon flux via BVOC emissions, calculated using the flux‐gradient method, was significantly higher in the prairie assemblage compared with miscanthus and switchgrass. The BVOC carbon flux was approximately three orders of magnitude lower than the net fluxes of carbon measured over the same fields using eddy covariance systems. Extrapolation of our findings to the landscape scale leads us to suggest that the widespread adoption of bioenergy crops could potentially alter the composition of BVOCs in the atmosphere, thereby influencing its warming potential, the formation of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate that, among at least these three potential options for bioenergy production, miscanthus is likely to have lower impacts on atmospheric chemistry and biotic interactions mediated by these volatiles when miscanthus is planted on the landscape scale. 相似文献