首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Analysis of population genetic relationships reveals the signatures of current processes such as spawning behaviour and migration, as well as those of historical events including vicariance and climate change. This study examines these signatures through testing broad‐ to fine‐scale genetic patterns among smallmouth bass Micropterus dolomieu spawning populations across their native Great Lakes range and outgroup areas, with fine‐scale concentration in Lake Erie. Our primary hypotheses include whether genetic patterns result from behavioural and/or geographical isolation, specifically: (i) Are spawning groups in interconnected waterways genetically separable? (ii) What is the degree of isolation across and among lakes, basins, and tributaries? (iii) Do genetic divergences correspond to geographical distances? and (iv) Are historical colonization patterns from glacial refugia retained? Variation at eight nuclear microsatellite DNA loci are analysed for 666 smallmouth bass from 28 locations, including 425 individuals in Lake Erie; as well as Lakes Superior, Huron, and Ontario, and outgroups from the Mississippi, Ohio, St. Lawrence, and Hudson River drainages. Results reveal marked genetic differences among lake and river populations, as well as surprisingly high divergences among closely spaced riverine sites. Results do not fit an isolation‐by‐geographical‐distance prediction for fine‐scale genetic patterns, but show weak correspondence across large geographical scales. Genetic relationships thus are consistent with hypotheses regarding divergent origins through vicariance in glacial refugia, followed by colonization pathways establishing modern‐day Great Lakes populations, and maintenance through behavioural site fidelity. Conservation management practices thus should preserve genetic identity and unique characters among smallmouth bass populations.  相似文献   

2.
Aim Free‐ranging benthopelagic fishes often have large population sizes and high rates of dispersal. These traits can act to homogenize population structure across the distributional range of a species and to reduce the likelihood of allopatric speciation. The apparent absence of any barriers to gene flow among populations, together with prior molecular evidence for panmixia across the ranges of three species, has resulted in Diplotaxodon, a genus of benthopelagic cichlid fishes of Lake Malawi, being proposed as a candidate case of sympatric speciation. Our aim was to further investigate this possibility by testing for intraspecific genetic subdivision among breeding populations, and intraspecific differences in breeding habitat. Location Lake Malawi, central‐east Africa. Methods We analysed eight microsatellite DNA loci to test for spatial genetic differences among populations on breeding grounds of eight Diplotaxodon species. We also tested for temporal population genetic differences within breeding grounds of three species. Records of ripe Diplotaxodon encountered during sampling were analysed to test if spatial variation in assemblage structure was linked to nearshore water depth and geographic proximity of sampling sites. Results Consistent with previous molecular evidence, within four of the eight species tested we found no evidence of spatial genetic structuring among breeding populations. However, within the other four species we found slight yet significant spatial genetic differences, indicating restricted gene flow among breeding grounds. There was no evidence of temporal genetic differences within sites. Analyses of the distributions of ripe Diplotaxodon revealed differences in assemblage structure linked to nearshore water depth. Main conclusions Together, these results demonstrate both the evolution of fidelity to deep‐water breeding locations in some Diplotaxodon species, and differences in breeding habitat among species. These findings are consistent with a role for divergence of breeding habitat in speciation of these cichlids, possibly promoted by dispersal limitation among geographically segregated spawning aggregations.  相似文献   

3.
Catchment population structure and divergence patterns of the rainbow darter Etheostoma caeruleum (Percidae: Teleostei), an eastern North American benthic fish, are tested using a landscape genetics approach. Allelic variation at eight nuclear DNA microsatellite loci and two mitochondrial DNA regions [cytochrome (cyt) b gene and control region; 2056 aligned base pairs (bp)] is analysed from 89 individuals and six sites in the Lake Erie catchment (Blanchard, Chagrin, Cuyahoga and Grand Rivers) v. the Ohio River catchment (Big Darby Creek and Little Miami River). Genetic and geographic patterning is assessed using phylogenetic trees, pair‐wise FST analogues, AMOVA partitioning, Mantel regression, Bayesian assignment, 3D factorial correspondence and barrier analyses. Results identify 34 cyt b haplotypes, 22 control region haplotypes and 137 microsatellite alleles whose distributions demonstrate marked genetic divergence between populations from the Lake Erie and Ohio River catchments. Etheostoma caeruleum populations in the Lake Erie and Ohio River catchments diverged c. 1·6 mya during the Pleistocene glaciations. Greater genetic separations characterize the Ohio River populations, reflecting their older habitat age and less recent connectivity. Divergence levels within the Lake Erie catchment denote more recent post‐glacial origins. Notably, the western Lake Erie Blanchard River population markedly differs from the three central basin tributary samples, which are each genetically distinguishable using microsatellites. Overall relationships among the Lake Erie sites refute a genetic isolation by geographic distance hypothesis. Etheostoma caeruleum populations thus exchange few genes and have low migration among tributaries and catchments.  相似文献   

4.
Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron‐Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron‐Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.  相似文献   

5.
6.
1. For many fish species, survival during early life stages is linked to the size and energetic condition of females prior to reproduction. For example, females in good energetic condition are often more fecund and produce larger eggs and offspring than those in poor condition. 2. We measured the characteristics of female yellow perch (Perca flavescens) that may influence annual population fluctuations. From 2005 to 2007, we measured spatial variation in female reproductive traits, such as age, length, mass and energy density (J g?1) of somatic tissues and ovaries among four spawning aggregations of yellow perch in western and central Lake Erie. 3. Maternal traits, such as somatic energy density and spawner age distribution, differed between the western and central basin, whereas reproductive traits, such as fecundity and ovarian energy density, differed across years. 4. To understand the implications of observed differences in demographic rates (growth and mortality rates) between basins, we developed a deterministic model to simulate the total egg production in the western and central basins under different scenarios of fishing mortality. 5. High growth rates and low mortality rates combined to produce higher modelled estimates of total egg production in the central than in the western basin, and a larger proportion of eggs were produced by old age classes in the central basin than in the western basin. 6. Our results demonstrate that changing harvest levels for populations with different demographic rates can influence total reproductive output through complex interactions between age‐specific mortality, growth and size‐specific fecundity, which has implications for the population dynamics of yellow perch and related species across a broad geographic range.  相似文献   

7.
Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River''s outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L−1) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems.  相似文献   

8.
Over 70% of North American freshwater mussel species (families Unionidae and Margaritiferidae) are listed as threatened or endangered. Knowledge of the genetic structure of target species is essential for the development of effective conservation plans. Because Ambelma plicata is a common species, its population genetic structure is likely to be relatively intact, making it a logical model species for investigations of freshwater mussel population genetics. Using mtDNA and allozymes, we determined the genotypes of 170+ individuals in each of three distinct drainages: Lake Erie, Ohio River, and the Lower Mississippi River. Overall, within-population variation increased significantly from north to south, with unique haplotypes and allele frequencies in the Kiamichi River (Lower Mississippi River drainage). Genetic diversity was relatively low in the Strawberry River (Lower Mississippi River drainage), and in the Lake Erie drainage. We calculated significant among-population structure using both molecular markers (A.p. Φst = 0.15, θst = 0.12). Using a hierarchical approach, we found low genetic structure among rivers and drainages separated by large geographic distances, indicating high effective population size and/or highly vagile fish hosts for this species. Genetic structure in the Lake Erie drainage was similar to that in the Ohio River, and indicates that northern populations were founded from at least two glacial refugia following the Pleistocene. Conservation of genetic diversity in Amblema plicata and other mussel species with similar genetic structure should focus on protection of a number of individual populations, especially those in southern rivers.  相似文献   

9.
Smith MA  Green DM 《Molecular ecology》2004,13(12):3723-3733
Many of the species that recolonized previously glaciated areas in the Great Lakes basin of North America over the past 10-12,000 years exhibit genetic evidence of multiple invasion routes and present-day secondary contact between deeply divergent lineages. With this in mind, we investigated the phylogeographical structure of genetic variability in Fowler's toads (Bufo fowleri) at the northern edge of its distribution where its range encircles the Lake Erie basin. Because B. fowleri is so closely tied to habitats along the Lake Erie shoreline, we would expect to find clear evidence of the number of invasions leading to the species' colonization of the northern shore. A 540 bp sequence from the mitochondrial control region was amplified and analysed for 158 individuals from 21 populations. Interpopulation sequence variation ranged from 0% to 6%. Phylogenetic analysis of p-distance using the neighbor-joining method revealed two deeply divergent (6% sequence divergence) mtDNA lineages (Phylogroup 1 and 2), possibly arising as a result of secondary contact of populations that entered the region from two separate glacial refugia. However, the phylogeographical pattern was not simple. The populations at Long Point, on the north shore of Lake Erie, clustered with the population from Indiana Dunes on Lake Michigan to form Phylogroup 2 whereas all other B. fowleri populations examined from both sides of Lake Erie constituted Phylogroup 1. Furthermore, mtDNA sequences from the related species Bufo americanus, obtained from populations outside the range of B. fowleri, clustered with mtDNA haplotypes of B. fowleri Phylogroup 1, indicating the possibility of partial introgression of mitochondria from one species to the other.  相似文献   

10.
1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L?1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young‐of‐year, YOY, and adult), a cold‐water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm‐water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool‐water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid‐July to mid‐October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm‐water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: ?35%), followed by adult emerald shiner (mean: ?12%), YOY rainbow smelt (mean: ?10%) and YOY and adult yellow perch (mean: ?8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics, trophic interactions and fish community structure.  相似文献   

11.
Species richness and geographical phenotypic variation in East African lacustrine cichlids are often correlated with ecological specializations and limited dispersal. This study compares mitochondrial and microsatellite genetic diversity and structure among three sympatric rock-dwelling cichlids of Lake Tanganyika, Eretmodus cyanostictus, Tropheus moorii, and Ophthalmotilapia ventralis. The species represent three endemic, phylogenetically distinct tribes (Eretmodini, Tropheini, and Ectodini), and display divergent ecomorphological and behavioral specialization. Sample locations span both continuous, rocky shoreline and a potential dispersal barrier in the form of a muddy bay. High genetic diversity and population differentiation were detected in T. moorii and E. cyanostictus, whereas much lower variation and structure were found in O. ventralis. In particular, while a 7-km-wide muddy bay curtails dispersal in all three species to a similar extent, gene flow along mostly continuous habitat appeared to be controlled by distance in E. cyanostictus, further restricted by site philopatry and/or minor habitat discontinuities in T. moorii, and unrestrained in O. ventralis. In contrast to the general pattern of high gene flow along continuous shorelines in rock-dwelling cichlids of Lake Malawi, our study identifies differences in population structure among stenotopic Lake Tanganyika species. The amount of genetic differentiation among populations was not related to the degree of geographical variation of body color, especially since more phenotypic variation is observed in O. ventralis than in the genetically highly structured E. cyanostictus. [Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

12.
Mussels in several orders possess two separate mitochondrial lineages: a standard female‐inherited form and one inherited only through males. This system of doubly uniparental inheritance (DUI) for mitochondrial genes provides an opportunity to compare the population structure of gene‐lineages passed either mother‐to‐daughter or father‐to‐son. In the present study, we contrast variation in the male and female haplotype lineages of the American freshwater mussel species, Lampsilis siliquoidea (sometimes called Lampsilis radiata luteola), throughout the Lake Erie, Ohio River, and upper Mississippi River watersheds, and contrast variation with the sequences obtained for the related species/subspecies Lampsilis radiata radiata from Maine. The genetic markers were fragments of the cytochrome c oxidase subunit I gene (COI), which occurs in both mitochondrial types, F (female) and M (male). High haplotype diversity was found in the two independent lineages, although purifying selection against amino acid change appeared to be stronger in the female than the male lineage. Phylogeographical patterns also varied between mitochondria passing through females and males. The female lineage exhibited more population structure, with the occurrence of private or nearly‐private haplotypes within two streams, and three others showed restricted haplotype distributions. By contrast to the F‐haplotypes, complex phylogenetic structure occurred for M‐haplotypes, yet this phylogenetic variation coincided with almost no geographical pattern within haplotypes. Basically, F‐haplotypes showed isolation, especially above physical barriers, whereas M‐haplotypes did not. A few individuals in the eastern Lake Erie watershed even possessed M‐haplotypes of an Atlantic Slope (L. radiata radiata) origin, although their F‐haplotypes were typical of Midwestern L. siliquoidea. The finding that mussels package sperm as spermatozuegmata, which float downstream, may underlie greater gene mobility in male‐inherited mitochondria. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 229–240.  相似文献   

13.
Global climate warming is exacerbating the melting of glaciers in Arctic and subarctic nearshore regions. Glacial discharge causes increases in sedimentation, abrasion of organisms, and sand/silt cover along with lowered light intensity, salinity, nitrate and hard substrate cover. These effects can have deleterious consequences on foundation species, such as the kelps that provide important habitat structure and support tightly‐linked food webs. The purpose of this study was to determine if the kelp, Saccharina latissima, from a glacially‐influenced and an oceanic shore in a subarctic Alaskan estuary exhibits differing seasonal growth patterns in response to its environment. Reciprocal in situ shore transplant studies examined seasonal patterns in growth, physiological competence (as maximum quantum yield), morphology and storage product levels (mannitol) of S. latissima. In situ growth was seasonally different at the two shore locations, with a shorter growing season at the glacially‐influenced shore. During the glacial melt season, the thalli at the two shore locations were morphologically distinct. Mannitol levels were typically higher in thalli from the oceanic site, with generally low mannitol levels at the end and the beginning of the growing season on both shores. Maximum quantum yield was consistently high (≥0.7) at both shore sites and did not vary seasonally. Growth rates of glacially‐influenced transplants to the oceanic shore suggest that the glacially‐influenced population has a different seasonal growth pattern from that of the oceanic shore site, which seems to be genetically fixed or based on differences in gene expression. It appears that S. latissima is a highly resilient species, partly due to high phenotypic plasticity, which may have led to genetic fixation under persistent glacial conditions.  相似文献   

14.
The population genetic structure of the shore crab Pachygrapsus marmoratus was studied along the Portuguese coast based on six variable microsatellite loci. Genetic differentiation among populations according to a geographic gradient was not detected. This lack of genetic structure reflects the continuous distribution of the species along the Portuguese coast and suggests that gene flow occurs within the studied distribution range. Gene flow is probably maintained by the planktonic larvae of P. marmoratus that can last up to 31 days in the plankton. Tests for population differentiation demonstrated that the Praia das Avencas population is genetically more separated from all other populations, and Bayesian methodologies tend to form 4 groups that clustered together populations that are several hundred kilometres apart. This grouping pattern could be due to coastal hydrological events that are apparently influencing larval flux. Other hypotheses to explain the significant genetic heterogeneity among populations on a local scale and the absence of geographic variation are pre- and post-settlement natural selection events. Results suggest that the forces causing genetic differentiation may be acting on a local scale and that the larval pool is possibly not always mixed homogeneously.  相似文献   

15.
Hugh J. MacIsaac 《Oecologia》1996,105(4):484-492
The zebra mussel Dreissena polymorpha was introduced to North America during the mid-1980s, and is now a dominant member of many benthic communities in the lower Great Lakes. In this study, I explored the abundance, biomass, size structure and settlement of Dreissena inhabiting rocks along a wave-swept disturbance gradient near Middle Sister Island in western Lake Erie. Ten rocks were collected from quadrats at six sites along each of three transect lines oriented perpendicular to shore. Occurrence, abundance and biomass of Dreissena on smaller, movable rocks were positively associated with rock distance from shore (lake depth) and with rock area; rocks at nearshore sites supported little, if any, Dreissena, whereas those at offshore sites were heavily colonized. Mussel size distributions also differed in relation to shore distance. Large mussels (19 mm) were underrepresented or absent on rocks collected at nearshore sites, but were overrepresented at offshore locations (37 m). Settlement of larval mussels on settling pads was positively correlated with distance offshore and with time of exposure, though settlement was substantial even at a nearshore (10 m) location. Area-adjusted mussel dry mass increased more rapidly with distance offshore on large than on small rocks. Large rocks also required more force to displace and were significantly less likely to be disturbed when transplanted at the study site. Results from this study indicate that occurrence, abundance and size structure of Dreissena in nearshore waters of Lake Erie correspond with the frequency of habitat disturbance, though other factors including food limitation and larval supply may also contribute to these patterns. These patterns complement studies that established the significance of physical disturbance in other aquatic systems.  相似文献   

16.
Chondrus crispus Stackh. has been intensely studied, yet no study to date has elucidated its population structure or mating system despite many populations in which there was a haploid bias and lack of male gametophytes. Therefore, 12 nuclear microsatellite loci were identified in this red alga. Microsatellite markers were developed and tested against a panel of specimens collected from two shore levels at two sites in Brittany, France: Pointe de Primel and Pointe de la Jument, Concarneau. Single locus genetic determinism was verified at eight polymorphic loci, as only one band was observed for haploid genotypes, whereas one or two bands were observed for diploids. These markers enabled the detection of unique genotypes within sampled populations, indicating that very few fronds shared the same multilocus genotype. This finding suggests that asexual reproduction was not the prevailing mode of reproduction. In addition, we explored the hierarchical population structure showing that gene flow is restricted at small spatial scales (<50 m) between upper and lower Chondrus‐range populations within a shore. Sexual reproduction predominated in the populations of C. crispus studied, but probably due to fine‐scale spatial substructuring, inbreeding was also significant. In conclusion, this study reveals that fine‐scale genetic variation is of major importance in C. crispus, suggesting that differences between microhabitats should be essential in understanding evolutionary processes in this species.  相似文献   

17.
Analyses of the genetic population structure of spotted seatrout Cynoscion nebulosus along the south‐eastern U.S. coast using 13 microsatellites suggest significant population differentiation between fish in North Carolina (NC) compared with South Carolina (SC) and Georgia (GA), with New River, NC, serving as an area of integration between northern and southern C. nebulosus. Although there is a significant break in gene flow between these areas, the overall pattern throughout the sampling range represents a gradient in genetic diversification with the degree of geographic separation. Latitudinal distance and estuarine density appear to be main drivers in the genetic differentiation of C. nebulosus along the south‐eastern U.S. coast. The isolation‐by‐distance gene‐flow pattern creates fine‐scale differences in the genetic composition of proximal estuaries and dictates that stocking must be confined to within 100 km of the location of broodstock collection in order to maintain the natural gradient of genetic variation along the south‐eastern U.S. coast.  相似文献   

18.
Salmonids spawn in highly diverse habitats, exhibit strong genetic population structuring, and can quickly colonize newly created habitats with few founders. Spawning traits often differ among populations, but it is largely unknown if these differences are adaptive or due to genetic drift. To test if sockeye salmon (Oncorhynchus nerka) populations are adapted to glacial, beach, and tributary spawning habitats, we examined variation in heritable phenotypic traits associated with spawning in 13 populations of wild sockeye salmon in Lake Clark, Alaska. These populations were commonly founded between 100 and 400 hundred sockeye salmon generations ago and exhibit low genetic divergence at 11 microsatellite loci (F ST < 0.024) that is uncorrelated with spawning habitat type. We found that mean P ST (phenotypic divergence among populations) exceeded neutral F ST for most phenotypic traits measured, indicating that phenotypic differences among populations could not be explained by genetic drift alone. Phenotypic divergence among populations was associated with spawning habitat differences, but not with neutral genetic divergence. For example, female body color was lighter and egg color was darker in glacial than non-glacial habitats. This may be due to reduced sexual selection for red spawning color in glacial habitats and an apparent trade-off in carotenoid allocation to body and egg color in females. Phenotypic plasticity is an unlikely source of phenotypic differences because Lake Clark sockeye salmon spend nearly all their lives in a common environment. Our data suggest that Lake Clark sockeye salmon populations are adapted to spawning in glacial, beach and tributary habitats and provide the first evidence of a glacial spawning ecotype in salmonids. Glacial spawning habitats are often young (i.e., <200 years old) and ephemeral. Thus, local adaptation of sockeye salmon to glacial habitats appears to have occurred recently.  相似文献   

19.
We demonstrate a clear example of local adaptation of seasonal timing of spawning and embryo development. The consequence is a population of pink salmon that is segmented into spawning groups that use the same limited habitat. We synthesize published observations with results of new analyses to demonstrate that genetic variation of these traits results in survival differentials related to that variation, and that density‐dependent embryo mortality and seasonally variable juvenile mortality are a mechanism of selection. Most examples of local adaptation in natural systems depend on observed correlations between environments and fitness traits, but do not fully demonstrate local adaptation: that the trait is genetically determined, exhibits different fitness in common environments or across different environments, and its variation is mechanistically connected to fitness differences. The geographic or temporal scales of local adaptation often remain obscure. Here, we show that heritable, fine‐scale differences of timing of reproductive migration in a pink salmon (Oncorhynchus gorbuscha) resulted in temporal structure that persisted several generations; the differences enable a density‐dependent population to pack more spawners into limited spawning habitat, that is, enhance its fitness. A balanced trade‐off of survivals results because embryos from early‐migrating fish have a lower freshwater survival (harsh early physical conditions and disturbance by late spawners), but emigrant fry from late‐migrating fish have lower marine survivals (timing of their vernal emergence into the estuarine environment). Such fine‐scale local adaptations increase the genetic portfolio of the populations and may provide a buffer against the impacts of climate change.  相似文献   

20.
The north-central Patagonian coast is the sea lions most abundant area in Argentina. As occurs along the entire Atlantic coast, the distribution of breeding colonies at this smaller geographical scale is also patchy, showing at least three areas with breeding activity. We study the genetic structure and historical population dynamics of the species in five colonies in this area, analysing a 508 base-pair segment of the D-loop control region. Otaria flavescens showed 10 haplotypes with 12 polymorphic sites. The genealogical relationship between haplotypes revealed a shallow pattern of phylogeographic structure. The analysis of molecular variance showed significant differences between colonies, however, pairwise comparisons only indicate significant differences between a pair of colonies belonging to different breeding areas. The pattern of haplotype differentiation and the mismatch distribution analysis suggest a possible bottleneck that would have occurred 64,000 years ago, followed by a demographic expansion of the three southernmost colonies. Thus, the historical population dynamics of O. flavescens in north-central Patagonia appears to be closely related with the dynamics of the Late Pleistocene glaciations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号