首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β‐actin and GAP‐43 mRNAs. β‐actin 3′UTR has a defined element for interaction with ZBP1, but GAP‐43 mRNA shows no homology to this RNA sequence. Here, we show that an AU‐rich regulatory element (ARE) in GAP‐43′s 3′UTR is necessary and sufficient for its axonal localization. Axonal GAP‐43 mRNA levels increase after in vivo injury, and GAP‐43 mRNA shows an increased half‐life in regenerating axons. GAP‐43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co‐immunoprecipitate in an RNA‐dependent fashion. Reporter mRNA with the GAP‐43 ARE competes with endogenous β‐actin mRNA for axonal localization and decreases axon length and branching similar to the β‐actin 3′UTR competing with endogenous GAP‐43 mRNA. Conversely, over‐expressing GAP‐43 coding sequence with its 3′UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP‐43′s 3′UTR.

  相似文献   


3.
Parkinson's disease (PD) is a common neurodegenerative disease, but its pathogenesis remains elusive. A mutation in ubiquitin C‐terminal hydrolase L1 (UCH‐L1) is responsible for a form of genetic PD which strongly resembles the idiopathic PD. We previously showed that 1‐(3′,4′‐dihydroxybenzyl)‐1,2,3,4‐tetrahydroisoquinoline (3′,4′DHBnTIQ) is an endogenous parkinsonism‐inducing dopamine derivative. Here, we investigated the interaction between 3′,4′DHBnTIQ and UCH‐L1 and its possible role in the pathogenesis of idiopathic PD. Our results indicate that 3′,4′DHBnTIQ binds to UCH‐L1 specifically at Cys152 in vitro. In addition, 3′,4′DHBnTIQ treatment increased the amount of UCH‐L1 in the insoluble fraction of SH‐SY5Y cells and inhibited its hydrolase activity to 60%, reducing the level of ubiquitin in the soluble fraction of SH‐SY5Y cells. Catechol‐modified UCH‐L1 as well as insoluble UCH‐L1 were detected in the midbrain of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐treated PD model mice. Structurally as well as functionally altered UCH‐L1 have been detected in the brains of patients with idiopathic PD. We suggest that conjugation of UCH‐L1 by neurotoxic endogenous compounds such as 3′,4′DHBnTIQ might play a key role in onset and progression of idiopathic PD.

  相似文献   


4.
Insulin‐like growth factor‐1 (IGF‐1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF‐1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon‐gamma (IFN‐γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl‐2 ratios, and expression of apoptosis‐related proteases (caspase‐3 and ‐12) in motoneurons rendered by IFN‐γ in a dose‐dependent manner. Post‐treatment with IGF‐1 attenuated these changes. In addition, IGF‐1 treatment of motoneurons exposed to IFN‐γ decreased expression of inflammatory markers (cyclooxygenase‐2 and nuclear factor‐kappa B:inhibitor of kappa B ratio). Furthermore, IGF‐1 attenuated the loss of expression of IGF‐1 receptors (IGF‐1Rα and IGF‐1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN‐γ. To determine whether the protective effects of IGF‐1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ‐silenced VSC4.1 motoneurons following IFN‐γ and IGF‐1 exposure. These results suggest that IGF‐1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ.

  相似文献   


5.
Spreading depression (SD), the most likely cause of migraine aura and perhaps migraine, occurs with increased oxidative stress (OS). SD increases reactive oxygen species (ROS), and ROS, in turn, can signal to increase neuronal excitability, which includes increased SD susceptibility. SD also elevates tumor necrosis factor‐α (TNF‐α), which increases neuronal excitability. Accordingly, we probed for the cellular origin of OS from SD and its relationship to TNF‐α, which might promote SD, using rat hippocampal slice cultures. We observed significantly increased OS from SD in astrocytes and microglia but not in neurons or oligodendrocytes. Since insulin‐like growth factor‐1 (IGF‐1) mitigates OS from SD, we determined the cell types responsible for this effect. We found that IGF‐1 significantly decreased microglial but not astrocytic OS from SD. We also show that IGF‐1 abrogated the SD‐induced TNF‐α increase. Furthermore, TNF‐α application increased microglial but not astrocytic OS, an effect abrogated by IGF‐1. Next, we showed that SD increased SD susceptibility, and does so via TNF‐α. This work suggests that microglia promote SD via increased and interrelated ROS and TNF‐α signaling. Thus, IGF‐1 mitigation of microglial ROS and TNF‐α responses may be targets for novel therapeutics development to prevent SD, and perhaps migraine.

  相似文献   


6.
Recent studies have emphasized the important role of microRNA (miRNA) clusters and common target genes in disease progression. Despite the known involvement of the miR‐192/215 family in many human diseases, its biological role in Hirschsprung disease (HSCR) remains undefined. In this study, we explored the role of the miR‐192/215 family in the pathogenesis of HSCR. Quantitative real‐time PCR and western blotting measured relative expression levels of miRNAs, mRNAs, and proteins in 80 HSCR patients and 77 normal colon tissues. Targets were evaluated by dual‐luciferase reporter assays, and the functional effects of miR‐192/215 on human 293T and SH‐SY5Y cells were detected by the Transwell assay, CCK8 assay and flow cytometry. MiR‐192/215 was significantly down‐regulated in HSCR tissue samples, and their knockdown inhibited cell migration and proliferation in the human 293T and SH‐SY5Y cell lines. Nidogen 1 (NID1) was confirmed as a common target gene of miR‐192/215 by dual‐luciferase reporter gene assay and its expression was inversely correlated with that of miR‐192/215 in tissue samples and cell lines. Silencing of NID1 could rescue the extent of the suppressing effects by miR‐192/215 inhibitor. The down‐regulation of miR‐192/215 may contribute to HSCR development by targeting NID1.

  相似文献   


7.
HIV‐1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA‐mediated pathway in human microglial cells in response to HIV‐1 Tat protein has been demonstrated in this study. Over‐expression and knockdown of microRNAs, luciferase reporter assay, and site‐directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR‐17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV‐1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR‐17 was done by luciferase reporter assay. The over‐expression and knockdown of miR‐17 in human microglial cells showed the direct role of miR‐17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR‐17 in ROS generation through over‐expression and knockdown of miR‐17 in human microglial cells exposed to HIV‐1 Tat C protein.

  相似文献   


8.
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ‐induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ‐induced apoptosis. Our results revealed that β‐catenin and miR‐21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR‐21 expression through inhibiting the Wnt/β‐catenin/TCF4 pathway. Furthermore, down‐regulation of miR‐21 enhanced the pro‐apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ‐mediated apoptosis in a miR‐21‐dependent manner. In conclusion, SFN effectively enhances TMZ‐induced apoptosis by inhibiting miR‐21 via Wnt/β‐catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment.

  相似文献   


9.
Recent studies have shown that sigma‐1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3‐methyl‐6‐chloro‐7,8‐hydroxy‐1‐[3‐methylphenyl]‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine), an atypical dopamine receptor‐1 agonist, has been recently identified as a potent allosteric modulator of sigma‐1 receptor. Here, we investigated the anti‐inflammatory effects of SKF83959 in lipopolysaccharide (LPS)‐stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro‐inflammatory mediators, such as tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma‐1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma‐1 receptors, and enhanced the inhibitory effects of DHEA on LPS‐induced microglia activation in a synergic manner. Furthermore, in a microglia‐conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS‐activated microglia toward HT‐22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma‐1 receptors by SKF83959 inhibits microglia‐mediated inflammation.

  相似文献   


10.
11.
Glutamate transport is a critical process in the brain that maintains low extracellular levels of glutamate to allow for efficient neurotransmission and prevent excitotoxicity. Loss of glutamate transport function is implicated in epilepsy, traumatic brain injury, and amyotrophic lateral sclerosis. It remains unclear whether or not glutamate transport can be modulated in these disease conditions to improve outcome. Here, we show that sirtuin (SIRT)4, a mitochondrial sirtuin, is up‐regulated in response to treatment with the potent excitotoxin kainic acid. Loss of SIRT4 leads to a more severe reaction to kainic acid and decreased glutamate transporter expression and function in the brain. Together, these results indicate a critical and novel stress response role for SIRT4 in promoting proper glutamate transport capacity and protecting against excitotoxicity.

  相似文献   


12.
Cellular interactions mediated by the neural cell adhesion molecule (NCAM) are critical in cell migration, differentiation and plasticity. Switching of the NCAM‐interaction mode, from adhesion to signalling, is determined by NCAM carrying a particular post‐translational modification, polysialic acid (PSA). Regulation of cell‐surface PSA‐NCAM is traditionally viewed as a direct consequence of polysialyltransferase activity. Taking advantage of the polysialyltransferase Ca2+‐dependent activity, we demonstrate in TE671 cells that downregulation of PSA‐NCAM synthesis constitutes a necessary but not sufficient condition to reduce cell‐surface PSA‐NCAM; instead, PSA‐NCAM turnover required internalization of the molecule into the cytosol. PSA‐NCAM internalization was specifically triggered by collagen in the extracellular matrix (ECM) and prevented by insulin‐like growth factor (IGF1) and insulin. Our results pose a novel role for IGF1 and insulin in controlling cell migration through modulation of PSA‐NCAM turnover at the cell surface.

  相似文献   


13.
During neuronal differentiation, axonal elongation is regulated by both external and intrinsic stimuli, including neurotropic factors, cytoskeleton dynamics, second messengers such as cyclic adenosine monophosphate (cAMP), and neuronal excitability. Chloride intracellular channel 1 (CLIC1) is a cytoplasmic hydrophilic protein that, upon stimulation, dimerizes and translocates to the plasma membrane, where it contributes to increase the membrane chloride conductance. Here, we investigated the expression of CLIC1 in primary hippocampal neurons and retinal ganglion cells (RGCs) and examined how the functional expression of CLIC1 specifically modulates neurite outgrowth of neonatal murine RGCs. Using a combination of electrophysiology and immunohistochemistry, we found that CLIC1 is expressed in hippocampal neurons and RGCs and that the chloride current mediated by CLIC1 is required for maintaining growth cone morphology and sustaining cAMP‐stimulated neurite elongation in dissociated immunopurified RGCs. In cultured RGCs, inhibition of CLIC1 ionic current through the pharmacological blocker IAA94 or a specific anti‐CLIC1 antibody directed against its extracellular domain prevents the neurite outgrowth induced by cAMP. CLIC1‐mediated chloride current, which results from an increased open probability of the channel, is detected only when cAMP is elevated. Inhibition of protein kinase A prevents such current. These results indicate that CLIC1 functional expression is regulated by cAMP via protein kinase A and is required for neurite outgrowth modulation during neuronal differentiation.

  相似文献   


14.
The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin‐modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin‐modifying enzymes and recovery potential of enzyme modulators in scopolamine‐induced amnesia. Scopolamine administration drastically up‐regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB‐binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza‐2′deoxycytidine recovered scopolamine‐impaired hippocampal‐dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain‐derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza‐2′deoxycytidine and their co‐administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine‐induced up‐regulation of chromatin‐modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets.

  相似文献   


15.
16.
Japanese encephalitis virus (JEV), a single‐stranded RNA (ssRNA) virus, is the leading cause of encephalitis in Asia. Microglial activation is one of the key events in JEV‐induced neuroinflammation. Although the various microRNAs (miRNAs) has been shown to regulate microglia activation during pathological conditions including neuroviral infections, till date, the involvement of miRNAs in JEV infection has not been evaluated. Hence, we sought to evaluate the possible role of miRNAs in mediating JEV‐induced microglia activation. Initial screening revealed significant up‐regulation of miR‐29b in JEV‐infected mouse microglial cell line (BV‐2) and primary microglial cells. Furthermore, using bioinformatics tools, we identified tumor necrosis factor alpha‐induced protein 3, a negative regulator of nuclear factor‐kappa B signaling as a potential target of miR‐29b. Interestingly, in vitro knockdown of miR‐29b resulted in significant over‐expression of tumor necrosis factor alpha‐induced protein 3, and subsequent decrease in nuclear translocation of pNF‐κB. JEV infection in BV‐2 cell line elevated inducible nitric oxide synthase, cyclooxygenase‐2, and pro‐inflammatory cytokine expression levels, which diminished after miR‐29b knockdown. Collectively, our study demonstrates involvement of miR‐29b in regulating JEV‐ induced microglial activation.

  相似文献   


17.
Sevoflurane is the most widely used anaesthetic administered by inhalation. Exposure to sevoflurane in neonatal mice can induce learning deficits and abnormal social behaviours. MicroRNA (miR)‐27a‐3p, a short, non‐coding RNA that functions as a tumour suppressor, is up‐regulated after inhalation of anaesthetic, and peroxisome proliferator‐activated receptor γ (PPAR‐γ) is one of its target genes. The objective of this study was to investigate how the miR‐27a‐3p–PPAR‐γ interaction affects sevoflurane‐induced neurotoxicity. A luciferase reporter assay was employed to identify the interaction between miR‐27a‐3p and PPAR‐γ. Primary hippocampal neuron cultures prepared from embryonic day 0 C57BL/6 mice were treated with miR‐27a‐3p inhibitor or a PPAR‐γ agonist to determine the effect of miR‐27a‐3p and PPAR‐γ on sevoflurane‐induced cellular damage. Cellular damage was assessed by a flow cytometry assay to detect apoptotic cells, immunofluorescence to detect reactive oxygen species, western blotting to detect NADPH oxidase 1/4 and ELISA to measure inflammatory cytokine levels. In vivo experiments were performed using a sevoflurane‐induced anaesthetic mouse model to analyse the effects of miR‐27a‐3p on neurotoxicity by measuring the number of apoptotic neurons using the Terminal‐deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) method and learning and memory function by employing the Morris water maze test. Our results revealed that PPAR‐γ expression was down‐regulated by miR‐27a‐3p following sevoflurane treatment in hippocampal neurons. Down‐regulation of miR‐27a‐3p expression decreased sevoflurane‐induced hippocampal neuron apoptosis by decreasing inflammation and oxidative stress‐related protein expression through the up‐regulation of PPAR‐γ. In vivo tests further confirmed that inhibition of miR‐27a‐3p expression attenuated sevoflurane‐induced neuronal apoptosis and learning and memory impairment. Our findings suggest that down‐regulation of miR‐27a‐3p expression ameliorated sevoflurane‐induced neurotoxicity and learning and memory impairment through the PPAR‐γ signalling pathway. MicroRNA‐27a‐3p may, therefore, be a potential therapeutic target for preventing or treating sevoflurane‐induced neurotoxicity.

  相似文献   

18.
Spinocerebellar ataxia type 3 (SCA3) is one of at least nine inherited neurodegenerative diseases caused by an expansion of a polyglutamine tract within corresponding disease‐specific proteins. In case of SCA3, mutation of Ataxin‐3 results in aggregation of misfolded protein, formation of intranuclear as well as cytosolic inclusion bodies and cell death in distinct neuronal populations. Since cyclin‐dependent kinase‐5 (CDK5) has been shown to exert beneficial effects on aggregate formation and cell death in various polyglutamine diseases, we tested its therapeutic potential for SCA3. Our data show increased caspase‐dependent Ataxin‐3 cleavage, aggregation, and neurodegeneration in the absence of sufficient CDK5 activity. This disease‐propagating effect could be reversed by mutation of the caspase cleavage site in Ataxin‐3. Moreover, reduction of CDK5 expression levels by RNAi in vivo enhances SCA3 toxicity as assayed in a Drosophila model for SCA3. In summary, we present CDK5 as a potent neuroprotectant, regulating cleavage and thereby toxicity of Ataxin‐3 and other polyglutamine proteins.

  相似文献   


19.
The overlapping clinical features of Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB) make differentiation difficult in the clinical environment. Evaluating the CSF levels of biomarkers in AD and DLB patients could facilitate clinical diagnosis. CSF Visinin‐like protein‐1 (VILIP‐1), a calcium‐mediated neuronal injury biomarker, has been described as a novel biomarker for AD. The aim of this study was to investigate the diagnostic utility of CSF VILIP‐1 and VILIP‐1/Aβ1–42 ratio to distinguish AD from DLB. Levels of CSF VILIP‐1, t‐tau, p‐tau181P, Aβ1–42, and α‐synuclein were measured in 61 AD patients, 32 DLB patients, and 40 normal controls using commercial ELISA kits. The results showed that the CSF VILIP‐1 level had significantly increased in AD patients compared with both normal controls and DLB patients. The CSF VILIP‐1 and VILIP‐1/Aβ1–42 levels had enough diagnostic accuracy to allow the detection and differential diagnosis of AD. Additionally, CSF VILIP‐1 levels were positively correlated with t‐tau and p‐tau181P within each group and with α‐synuclein in the AD and control groups. We conclude that CSF VILIP‐1 could be a diagnostic marker for AD, differentiating it from DLB. The analysis of biomarkers, representing different neuropathologies, is an important approach reflecting the heterogeneous features of AD and DLB.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号