首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


2.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


3.
4.
The axon initial segment (AIS) plays a central role in electrogenesis and in the maintenance of neuronal polarity. Its molecular organization is dependent on the scaffolding protein ankyrin (Ank) G and is regulated by kinases. For example, the phosphorylation of voltage‐gated sodium channels by the protein kinase CK2 regulates their interaction with AnkG and, consequently, their accumulation at the AIS. We previously showed that IQ motif containing J‐Schwannomin‐Interacting Protein 1 (IQCJ‐SCHIP‐1), an isoform of the SCHIP‐1, accumulated at the AIS in vivo. Here, we analyzed the molecular mechanisms involved in IQCJ‐SCHIP‐1‐specific axonal location. We showed that IQCJ‐SCHIP‐1 accumulation in the AIS of cultured hippocampal neurons depended on AnkG expression. Pull‐down assays and surface plasmon resonance analysis demonstrated that AnkG binds to CK2‐phosphorylated IQCJ‐SCHIP‐1 but not to the non‐phosphorylated protein. Surface plasmon resonance approaches using IQCJ‐SCHIP‐1, SCHIP‐1a, another SCHIP‐1 isoform, and their C‐terminus tail mutants revealed that a segment including multiple CK2‐phosphorylatable sites was directly involved in the interaction with AnkG. Pharmacological inhibition of CK2 diminished both IQCJ‐SCHIP‐1 and AnkG accumulation in the AIS. Silencing SCHIP‐1 expression reduced AnkG cluster at the AIS. Finally, over‐expression of IQCJ‐SCHIP‐1 decreased AnkG concentration at the AIS, whereas a mutant deleted of the CK2‐regulated AnkG interaction site did not. Our study reveals that CK2‐regulated IQJC‐SCHIP‐1 association with AnkG contributes to AIS maintenance.

  相似文献   


5.
The parkin‐associated endothelial‐like receptor (PAELR, GPR37) is an orphan G protein‐coupled receptor that interacts with and is degraded by parkin‐mediated ubiquitination. Mutations in parkin are thought to result in PAELR accumulation and increase neuronal cell death in Parkinson's disease. In this study, we find that the protein interacting with C‐kinase (PICK1) interacts with PAELR. Specifically, the Postsynaptic density protein‐95/Discs large/ZO‐1 (PDZ) domain of PICK1 interacted with the last three residues of the c‐terminal (ct) located PDZ motif of PAELR. Pull‐down assays indicated that recombinant and native PICK1, obtained from heterologous cells and rat brain tissue, respectively, were retained by a glutathione S‐transferase fusion of ct‐PAELR. Furthermore, coimmunoprecipitation studies isolated a PAELR‐PICK1 complex from transiently transfected cells. PICK1 interacts with parkin and our data showed that PICK1 reduces PAELR expression levels in transiently transfected heterologous cells compared to a PICK1 mutant that does not interact with PAELR. Finally, PICK1 over‐expression in HEK293 cells reduced cell death induced by PAEALR over‐expression during rotenone treatment and these effects of PICK1 were attenuated during inhibition of the proteasome. These results suggest a role for PICK1 in preventing PAELR‐induced cell toxicity.

  相似文献   


6.
7.
The gene encoding leucine‐rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon‐γ (IFN‐γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN‐γ‐mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal‐regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN‐γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP‐1 cells and human peripheral blood monocytes stimulated the ERK5‐LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5‐dependent IFN‐γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages.

  相似文献   


8.
Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia‐induced seizures on adenosine A1 and A2A receptors and 5′‐nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real‐time PCR, and 5′‐nucleotidase activity assays. Hyperthermic seizures were induced in 13‐day‐old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [3H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia‐induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [3H]ZM241385 as radioligand, 48 h after hyperthermia‐evoked convulsions. These short‐term changes in A1 and A2A receptors were also accompanied by a loss of 5′‐nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5′‐nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5′‐nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures.

  相似文献   


9.
Methyl‐β‐cyclodextrin (MβCD) is a reagent that depletes cholesterol and disrupts lipid rafts, a type of cholesterol‐enriched cell membrane microdomain. Lipid rafts are essential for neuronal functions such as synaptic transmission and plasticity, which are sensitive to even low doses of MβCD. However, how MβCD changes synaptic function, such as N‐methyl‐d ‐aspartate receptor (NMDA‐R) activity, remains unclear. We monitored changes in synaptic transmission and plasticity after disrupting lipid rafts with MβCD. At low concentrations (0.5 mg/mL), MβCD decreased basal synaptic transmission and miniature excitatory post‐synaptic current without changing NMDA‐R‐mediated synaptic transmission and the paired‐pulse facilitation ratio. Interestingly, low doses of MβCD failed to deplete cholesterol or affect α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPA‐R) and NMDA‐R levels, while clearly reducing GluA1 levels selectively in the synaptosomal fraction. Low doses of MβCD decreased the inhibitory effects of NASPM, an inhibitor for GluA2‐lacking AMPA‐R. MβCD successfully decreased NMDA‐R‐mediated long‐term potentiation but did not affect the formation of either NMDA‐R‐mediated or group I metabotropic glutamate receptor‐dependent long‐term depression. MβCD inhibited de‐depression without affecting de‐potentiation. These results suggest that MβCD regulates GluA1‐dependent synaptic potentiation but not synaptic depression in a cholesterol‐independent manner.

  相似文献   


10.
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   


11.
12.
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.

  相似文献   


13.
Leptin is a centrally acting hormone that controls metabolic pathways. Recent epidemiological studies suggest that plasma leptin is protective against Alzheimer's disease. However, the mechanism that underlies this effect remains uncertain. To investigate whether leptin inhibits the assembly of amyloid β‐protein (Aβ) on the cell surface of neurons, we treated primary neurons with leptin. Leptin treatment decreased the GM1 ganglioside (GM1) levels in the detergent‐resistant membrane microdomains (DRMs) of neurons. The increase in GM1 expression induced by leptin was inhibited after pre‐treatment with inhibitors of phosphatidylinositol 3‐kinase (LY294002), Akt (triciribine) and the mammalian target of rapamycin (i.e. rapamycin), but not by an inhibitor of extracellular signal‐regulated kinase (PD98059). In addition, pre‐treatment with these reagents blocked the induction of GM1 in DRMs by leptin. Furthermore, Aβ assembly on the cell surface of neurons was inhibited greatly after treatment with leptin. This reduction was markedly inhibited after pre‐treatment with LY294002, triciribine, and rapamycin. These results suggest that leptin significantly inhibits Aβ assembly by decreasing GM1 expression in DRMs of the neuronal surface through the phosphatidylinositol 3‐kinase/Akt/mammalian target of rapamycin pathway.

  相似文献   


14.
15.
16.
Tuftsin (Thr‐Lys‐Pro‐Arg) is a natural immunomodulating peptide found to stimulate phagocytosis in macrophages/microglia. Tuftsin binds to the receptor neuropilin‐1 (Nrp1) on the surface of cells. Nrp1 is a single‐pass transmembrane protein, but its intracellular C‐terminal domain is too small to signal independently. Instead, it associates with a variety of coreceptors. Despite its long history, the pathway through which tuftsin signals has not been described. To investigate this question, we employed various inhibitors to Nrp1's coreceptors to determine which route is responsible for tuftsin signaling. We use the inhibitor EG00229, which prevents tuftsin binding to Nrp1 on the surface of microglia and reverses the anti‐inflammatory M2 shift induced by tuftsin. Furthermore, we demonstrate that blockade of transforming growth factor beta (TGFβ) signaling via TβR1 disrupts the M2 shift similar to EG00229. We report that tuftsin promotes Smad3 phosphorylation and reduces Akt phosphorylation. Taken together, our data show that tuftsin signals through Nrp1 and the canonical TGFβ signaling pathway.

  相似文献   


17.
18.
19.
Drebrin an actin‐bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild‐type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5‐hydroxytryptamine receptor 1A (5‐HT1AR), and 5‐hydroxytryptamine receptor 7 (5‐HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel‐based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory‐related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory‐related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  相似文献   


20.
Vanishing white matter (VWM) is a recessive neurodegenerative disease caused by mutations in translation initiation factor eIF2B and leading to progressive brain myelin deterioration, secondary axonal damage, and death in early adolescence. Eif2b5R132H/R132H mice exhibit delayed developmental myelination, mild early neurodegeneration and a robust remyelination defect in response to cuprizone‐induced demyelination. In the current study we used Eif2b5R132H/R132H mice for mass‐spectrometry analyses, to follow the changes in brain protein abundance in normal‐ versus cuprizone‐diet fed mice during the remyelination recovery phase. Analysis of proteome profiles suggested that dysregulation of mitochondrial functions, altered proteasomal activity and impaired balance between protein synthesis and degradation play a role in VWM pathology. Consistent with these findings, we detected elevated levels of reactive oxygen species in mutant‐derived primary fibroblasts and reduced 20S proteasome activity in mutant brain homogenates. These observations highlight the importance of tight translational control to precise coordination of processes involved in myelin formation and regeneration and point at cellular functions that may contribute to VWM pathology.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号