首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The use of twins in the analysis of assortative mating   总被引:3,自引:0,他引:3  
L Eaves 《Heredity》1979,43(3):399-409
The simulations illustrated show that a plausible model for mate selection can generate data on the similarity of twins and their spouses which are remarkably consistent with a transitive model for the effects of mate selection. This is, biological considerations impose constraints upon the relative values of correlations which are not foreseen, for example, by the some advocates of conventional path models although they might be predicted by common sense. In particular, the correlation between the spouses of twins is expected to be non-zero under a model of phenotypic assortment and turns out to be approximately equal to the product of the twin correlation and the square of the marital correlation. The relative magnitudes of the correlations derived from an empirical study of such relationships should enable models of phenotypic assortment to be tested more rigorously. Including both identical and non-identical twins in the sample studied should permit the inherited and cultural components of the mating system to be identified with more conviction. In the event of one sex playing a more significant role in mate selection for particular traits, such studies should reveal diagnostic patterns of familial correlations as long as male and female twins and their spouses are analysed separately. If the analysis is restricted to phenotypic correlations of the parents, the qualitative findings do not appear to be greatly affected by selection due to assortative mating although a reduction in variance is to be expected if a large proportion of individuals is unable to mate. In such cases twins will also be significantly concordant for mating. The consequences of such varied regimes of assortation for the population structure and the relationship between traits in subsequent generations remain the object of future inquiry.  相似文献   

2.
Although mate choice by males does occur in nature, our understanding of its importance in driving evolutionary change remains limited compared with that for female mate choice. Recent theoretical models have shown that the evolution of male mate choice is more likely when individual variation in male mating effort and mating preferences exist and positively covary within populations. However, relatively little is known about the nature of such variation and its maintenance within natural populations. Here, using the Trinidadian guppy (Poecilia reticulata) as a model study system, we report that mating effort and mating preferences in males, based on female body length (a strong correlate of fecundity), positively covary and are significantly variable among subjects. Individual males are thus consistent, but not unanimous, in their mate choice. Both individual mating effort (including courtship effort) and mating preference were significantly repeatable. These novel findings support the assumptions and predictions of recent evolutionary models of male mate choice, and are consistent with the presence of additive genetic variation for male mate choice based on female size in our study population and thus with the opportunity for selection and further evolution of large female body size through male mate choice.  相似文献   

3.
The origin of new species can be influenced by both deterministic and stochastic factors. Mate choice and natural selection may be important deterministic causes of speciation (as opposed to the essentially stochastic factors of geographic isolation and genetic drift). Theoretical models predict that speciation is more likely when mate choice depends on an ecologically important trait that is subject to divergent natural selection, although many authors have considered such mating/ecology pleiotropy, or "magic-traits" to be unlikely. However, phenotypic signals are important in both mate choice and ecological processes such as avoiding predation. In chemically defended species, it may be that the phenotypic characteristics influencing mate choice are the same signals being used to transmit a warning to potential predators, although few studies have demonstrated this in wild populations. We tested for assortative mating between two color morphs of the Strawberry Poison-Dart Frog, Dendrobates pumilio, a group with striking geographic variation in aposematic color patterns. We found that females significantly prefer individuals of their own morph under two different light treatments, indicating strong assortative mating based on multiple coloration cues that are also important ecological signals. This study provides a rare example of one phenotypic trait affecting both ecological viability and nonrandom mating, indicating that mating/ecology pleiotropy is plausible in wild populations, particularly for organisms that are aposematically colored and visually orienting.  相似文献   

4.
Some species mate nonrandomly with respect to alleles underlying immunity. One hypothesis proposes that this is advantageous because nonrandom mating can lead to offspring with superior parasite resistance. We investigate this hypothesis, generalizing previous models in four ways: First, rather than only examining invasibility of modifiers of nonrandom mating, we identify evolutionarily stable strategies. Second, we study coevolution of both haploid and diploid hosts and parasites. Third, we allow for maternal parasite transmission. Fourth, we allow for many alleles at the interaction locus. We find that evolutionarily stable rates of assortative or disassortative mating are usually near zero or one. However, for one case, in which assumptions most closely match the major histocompatibility complex (MHC) system, intermediate rates of disassortative mating can evolve. Across all cases, with haploid hosts, evolution proceeds toward complete disassortative mating, whereas with diploid hosts either assortative or disassortative mating can evolve. Evolution of nonrandom mating is much less affected by the ploidy of parasites. For the MHC case, maternal transmission of parasites, because it creates an advantage to producing offspring that differ from their parents, leads to higher evolutionarily stable rates of disassortative mating. Lastly, with more alleles at the interaction locus, disassortative mating evolves to higher levels.  相似文献   

5.
The well-known phenotypic diversity of male sexual displays, and the high levels of genetic variation reported for individual display traits have generated the expectation that male display traits, and consequently male mating success, are highly evolvable. It has not been shown however that selection for male mating success, exerted by female preferences in an unmanipulated population, results in evolutionary change. Here, we tested the expectation that male mating success is highly evolvable in Drosophila bunnanda using an experimental evolution approach. Female D. bunnanda exhibit a strong, consistent preference for a specific combination of male cuticular hydrocarbons (CHCs). We used female preference to select for male mating success by propagating replicate populations from either attractive or unattractive males over 10 generations. Neither the combination of CHCs under sexual selection (the sexual signal) nor male mating success itself evolved. The lack of a response to selection was consistent with previous quantitative genetic experiments in D. bunnanda that demonstrated the virtual absence of genetic variance in the combination of CHCs under sexual selection. Persistent directional selection, such as applied by female mate choice, may erode genetic variance, resulting in multitrait evolutionary limits.  相似文献   

6.
We consider mating strategies for females who search for males sequentially during a season of limited length. We show that the best strategy rejects a given male type if encountered before a time‐threshold but accepts him after. For frequency‐independent benefits, we obtain the optimal time‐thresholds explicitly for both discrete and continuous distributions of males, and allow for mistakes being made in assessing the correct male type. When the benefits are indirect (genes for the offspring) and the population is under frequency‐dependent ecological selection, the benefits depend on the mating strategy of other females as well. This case is particularly relevant to speciation models that seek to explore the stability of reproductive isolation by assortative mating under frequency‐dependent ecological selection. We show that the indirect benefits are to be quantified by the reproductive values of couples, and describe how the evolutionarily stable time‐thresholds can be found. We conclude with an example based on the Levene model, in which we analyze the evolutionarily stable assortative mating strategies and the strength of reproductive isolation provided by them.  相似文献   

7.
Summary We present a mathematical model for predicting the expected fitness of phenotypically plastic organisms experiencing a variable environment. We assume that individuals experience two discrete environments probabilistically in time (as a Markov process) and that there are two different phenotypic states, each yielding the highest fitness in one of the two environments. We compare the expected fitness of a phenotypically fixed individual to that of an individual whose phenotype is induced to produce the better phenotype in each environment with a time lag between experiencing a new environment and realization of the new phenotype. Such time lags are common in organisms where phenotypically plastic, inducible traits have been documented. We find that although plasticity is generally adaptive when time lags are short (relative to the time scale of environmental variability), plasticity can be disadvantageous for longer lag times. Asymmetries in environmental change probabilities and/or the relative fitnesses of each phenotype strongly influence whether plasticity is favoured. In contrast to other models, our model does not require costs for plasticity to be disadvantageous; costs affect the results quantitatively, not qualitatively.  相似文献   

8.
Multi-sire mating of a mob of ewes is commonly used in commercial sheep production systems. However, ram mating success (defined as the number of lambs sired by an individual) can vary between rams in the mating group. If this trait was repeatable and heritable, selection of rams capable of siring larger numbers of lambs could reduce the number of rams required for mating and ultimately lead to increased genetic gain. However, genetic correlations with other productive traits, such as growth and female fertility, could influence the potential for ram mating success to be used as a selection trait. In order to investigate this trait, parentage records (including accuracy of sire assignment) from 15 commercial ram breeding flocks of various breeds were utilised to examine the repeatability and heritability of ram mating success in multi-sire mating groups. In addition, genetic and phenotypic correlations with growth and female fertility traits were estimated using ASReml. The final model used for the ram mating success traits included age of the ram and mating group as fixed effects. Older rams (3+years old) had 15% to 20% greater mating success than younger rams (1 or 2 years of age). Increasing the stringency of the criteria for inclusion of both an individual lamb, based on accuracy of sire assignment, or a whole mating group, based on how many lambs had an assigned sire, increased repeatability and heritability estimates of the ram mating success traits examined. With the most stringent criteria employed, where assignment of sire accuracy was >0.95 and the total number of lambs in the progeny group that failed to have a sire assigned was<0.05, repeatability and heritability for loge(number of lambs) was 0.40±0.09 and 0.26±0.12, respectively. For proportion of lambs sired, repeatability and heritability were both 0.30±0.09. The two ram mating traits (loge(nlamb) and proportion) were highly correlated, both phenotypically and genetically (0.88±0.01 and 0.94±0.06, respectively). Both phenotypic and genetic correlations between ram mating success and growth and other female fertility traits were low and non-significant. In conclusion, there is scope to select rams capable of producing high numbers of progeny and thus increase selection pressure on rams to increase genetic gain.  相似文献   

9.
Sánchez L  Woolliams JA 《Genetics》2004,166(1):527-535
The mechanisms by which nonrandom mating affects selected populations are not completely understood and remain a subject of scientific debate in the development of tractable predictors of population characteristics. The main objective of this study was to provide a predictive model for the genetic variance and covariance among mates for traits subjected to directional selection in populations with nonrandom mating based on the pedigree. Stochastic simulations were used to check the validity of this model. Our predictions indicate that the positive covariance among mates that is expected to result with preferential mating of relatives can be severely overpredicted from neutral expectations. The covariance expected from neutral theory is offset by an opposing covariance between the genetic mean of an individual's family and the Mendelian sampling term of its mate. This mechanism was able to predict the reduction in covariance among mates that we observed in the simulated populations and, in consequence, the equilibrium genetic variance and expected long-term genetic contributions. Additionally, this study provided confirmatory evidence on the postulated relationships of long-term genetic contributions with both the rate of genetic gain and the rate of inbreeding (deltaF) with nonrandom mating. The coefficient of variation of the expected gene flow among individuals and deltaF was sensitive to nonrandom mating when heritability was low, but less so as heritability increased, and the theory developed in the study was sufficient to explain this phenomenon.  相似文献   

10.
Assortative mating may result from intrinsic individual mating preferences or from assortment traits not requiring expression of preferences. Assortment traits are phenotypes expressed in both sexes that enhance the probability of encountering individuals possessing similar trait values. In the noctuid moth Spodoptera frugiperda, it has been suggested that nonrandom mating between two host strains is caused by a temporal assortment trait-that is, differential timing of calling and copulation during the night. By experimental manipulation of this trait in controlled mate-choice experiments, we investigated whether mating by same-strain individuals is enhanced mainly by the allochronic shift of mating activity or is also affected by time-independent intrinsic mating preferences. The observed patterns suggest that nonrandom mating between the two host strains in the laboratory is shaped by an interaction of both effects that is dominated by mating preferences during the first encounter night. This interaction changes over time as the preferences become weaker on subsequent nights. Males were less restricted than females with regard to both the time shift in mating activity and mate preferences. Although the nature of the mate-preference mechanism remains elusive, its restriction to females suggests that male-produced close-range pheromones emitted during courtship play a role.  相似文献   

11.
Michod RE 《Genetics》1980,96(1):275-296
THE EFFECT OF INBREEDING ON SOCIALITY IS STUDIED THEORETICALLY FOR THE EVOLUTION OF INTERACTIONS BETWEEN SIBLINGS IN CERTAIN MIXED MATING SYSTEMS THAT GIVE RISE TO INBREEDING: sib with random mating and selfing with random mating. Two approaches are taken. First, specific models of altruism are studied for the various mating systems. In the case of the additive model, inbreeding facilitates the evolution of altruistic genes. Likewise, for the multiplicative model this is usually the case, as long as the costs of altruism are not too great. Second, the case of total altruism, in which the gene has zero individual fitness but increases the fitness of associates, is studied for a general fitness formulation. In this case, inbreeding often retards the ability of such genes to increase when rare, and the equilibrium frequency of those recessive genes that can increase is totally independent of the mating system and, consequently, of the amount of inbreeding. It appears from the results presented that inbreeding facilitates most forms of altruism, but retards extreme altruism. These results stem from the fact that inbreeding increases the within-family relatedness by increasing the between-family variance in allele frequency. In most cases this facilitates altruism. However, in the case of total altruism, only heterozygotes can pass on the altruistic allele, and inbreeding tends to decrease this heterozygote class. In either case, the important effect of inbreeding lies in altering the genotypic distribution of the interactions.  相似文献   

12.
Mapping of quantitative trait loci (QTL) was used to investigate the genetic architecture of divergence in floral characters associated with the mating system, an important adaptive trait in angiosperms. Two species of Leptosiphon (Polemoniaceae), one strongly self-fertilizing (L. bicolor) and the other partially outcrossing (L. jepsonii), were crossed to produce F2 and both backcross progenies. For each crossing population, a linkage map was created using amplified fragment length polymorphism markers, and QTL were identified for several dimensions of floral size. For each of the five traits examined, three to seven QTL were detected, with independent datasets yielding congruent results in some but not all cases. The phenotypic effect of individual QTL was generally moderate. We estimated that many of the QTL were additive or showed dominance toward L. bicolor, whereas comparison of mean trait values for parental and cross progenies showed apparent overall dominance of L. jepsonii traits. Colocalization of QTL for different dimensions of floral size was consistent with high phenotypic correlations between floral traits. Substantial segregation distortion was observed in marker loci, the majority favoring alleles from the large-flowered parent. A low frequency of male sterility in the F2 population is consistent with the Dobzhansky-Muller model for the evolution of reproductive isolation.  相似文献   

13.
Mating behavior has profound consequences for two phenomena--individual reproductive success and the maintenance of species boundaries--that contribute to evolutionary processes. Studies of mating behavior in relation to individual reproductive success are common in many species, but studies of mating behavior in relation to genetic variation and species boundaries are less commonly conducted in socially complex species. Here we leveraged extensive observations of a wild yellow baboon (Papio cynocephalus) population that has experienced recent gene flow from a close sister taxon, the anubis baboon (Papio anubis), to examine how admixture-related genetic background affects mating behavior. We identified novel effects of genetic background on mating patterns, including an advantage accruing to anubis-like males and assortative mating among both yellow-like and anubis-like pairs. These genetic effects acted alongside social dominance rank, inbreeding avoidance, and age to produce highly nonrandom mating patterns. Our results suggest that this population may be undergoing admixture-related evolutionary change, driven in part by nonrandom mating. However, the strength of the genetic effect is mediated by behavioral plasticity and social interactions, emphasizing the strong influence of social context on mating behavior in socially complex species.  相似文献   

14.
The analysis of nonrandom mating using the frequency of marital isonymy indirectly measures the degree of population structure. However, population structure is the result of all matings in a population. Difficulties with large surname matrices have resulted in data being summarized into a single statistic or collapsed into brief tables, with considerable loss of information. By using sophisticated computer graphing procedures and displays, it is possible to directly analyze the mating structure of a community. If P is a vector of proportions for each male surname i (i = 1, 2, 3, ..., n), Q a similar vector of female surnames j(j = 1, 2, 3, ...,m), then the expected frequency matrix E of each possible mating is P x Q. The difference D between the observed frequency matrix O and the expected matrix is O-E. The D matrix is graphed with the x axis containing the male surnames, the y axis the female surnames, and the z axis the difference values dij. Negative values represent negative nonrandom mating and positive values positive nonrandom mating. From 5417 marriages (1840-1963) in the Midlands of Tasmania, those between spouses having 1 of 194 core names were extracted. We analyze these marriages utilizing the new technique and examine the surface of the graph and statistical analysis of its finer structure. Among the results was the demonstration of frequency-dependent selection of surnames. This finding has significant implications for microevolution of human populations, as surnames have existed for possibly 700 years.  相似文献   

15.
We report on an experiment to explore the importance of pollinator behavior and postpollination events within flowers in generating nonrandom mating in the desert perennial Lesquerella fendleri (Brassicaceae). In this experiment, we crossed four plants with each other in all combinations. We performed these crosses in three different ways, which varied the opportunity for nonrandom mating: single-donor hand pollinations, mixed hand pollinations, and field pollinations. Number of seeds sired by each donor following single-donor pollinations differed only slightly (though significantly) from random, indicating little variation in siring ability. However, we found more dramatic (and significant) departures from random mating for mixed hand pollinations. In the field we found even more nonrandomness, with some donors siring >71% of seeds on some maternal plants, despite equal opportunity to father seeds. The rank ordering of donors was consistent across the four females and across treatments, indicating that there was concordant nonrandom mating, a requirement for sexual selection. The most successful donor in all treatments also had the greatest pollen production per flower, and this trait may therefore be an important cause of the observed patterns. We infer that pollinator behavior and postpollination processes both contribute to the nonrandom mating observed in the field, and discuss the advantages of this new experimental approach.  相似文献   

16.
Summary A model for positive assortative mating based on genotype for one locus is employed to investigate the effect of this mating system on the genotypic structure of a second linked locus as well as on the joint genotypic structure of these two loci. It is shown that the second locus does not attain a precise positive assortative mating structure, but yet it shares a property that is characteristic of positive assortative mating, namely an increase in the frequency of homozygotes over that typically found in panmictic structures. Given any arbitrary genotypic structure for the parental population, the resulting offspring generation possesses a structure at the second locus that does not depend on the recombination frequency, while the joint structure of course does. In case assortative mating as well as linkage are not complete, there exists a unique joint equilibrium state for the two loci, which is characterized by complete stochastic independence between the two loci as well as by Hardy-Weinberg proportions at the second locus. For the second locus alone, Hardy-Weinberg equilibrium is realized if and only if gametic linkage equilibrium and an additionally specified condition are realized.  相似文献   

17.
A model of pair formation that treats mating between two individuals as a dynamic process rather than an instant event is suggested. A number of cases corresponding to polygamous and monogamous matings of individuals are considered. The individual mating preferences are represented in the model by a set of "compatibility probabilities." It is shown that the mating pattern (the distribution of characters among mating pairs) established in a population as a result of the process of pair formation does not uniquely reflect the pattern of mating preferences. Quite different mating patterns may occur in populations with very similar mating preferences, as well as similar mating patterns may occur in populations with different individual mating preferences. The model demonstrates that not only mating preferences of individuals but also specific mechanisms of pair formation play an important role in determining the mating pattern of a population.  相似文献   

18.
Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck.  相似文献   

19.
Polymorphic dispersal strategies are found in many plant and animal species. An important question is how the genetic variation underlying such polymorphisms is maintained. Numerous mechanisms have been discussed, including kin competition or frequency-dependent selection. In the context of sympatric speciation events, genetic and phenotypic variation is often assumed to be preserved by assortative mating. Thus, recently, this has been advocated as a possible mechanism leading to the evolution of dispersal polymorphisms. Here, we examine the role of assortative mating for the evolution of trade-off-driven dispersal polymorphisms by modeling univoltine insect species in a metapopulation. We show that assortative mating does not favor the evolution of polymorphisms. On the contrary, assortative mating favors the evolution of an intermediate dispersal type and a uni-modal distribution of traits within populations. As an alternative, mechanism dominance may explain the occurrence of two discrete morphs.  相似文献   

20.
Feldman and Cavalli-Sforza (1979a,b) have argued that the convergence properties of classical models of assortative mating are not known, and that these models involve arbitrary assumptions which assume rather than derive the achievement of equilibrium. A careful consideration of all models shows that the classical models are well defined and seem to achieve their equilibria. The model used by Feldman and Cavalli-Sforza involves an arbitrary assumption. Consideration of the models of Wright, Fisher, Bulmer, and Lande in the context of assortative mating or of selection versus mutation shows that these models are consistent with each other. The treatment of the balance between mutation and normalizing selection by Cavalli-Sforza and Feldman comes to conclusions sharply different from those of other authors, apparently as a result of this same arbitrary assumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号