首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
While pre‐conditioning is induced before stroke onset, ischemic post‐conditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild‐type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in Tcell–deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post‐stroke in wild‐type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p‐Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p‐mTOR, p‐S6K and p‐4EBP1 in the mTOR pathway, as well as growth associated Protein 43 (GAP43), both in the peri‐infarct area and core, 24 h after stroke. IPostC improved neurological function in nude rats 1–30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long‐term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long‐term protection by enhancing Akt and mTOR activity during the acute post‐stroke phase.

  相似文献   


2.
3.
4.
5.
The non‐selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin‐induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient‐mediated changes in synaptic plasticity, ranging from calmodulin‐mediated Ras‐induced signaling cascades comprising the mitogen‐activated protein kinase, PI3K signal transduction pathways as well as Ca2+/calmodulin‐dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6‐mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen‐activated protein kinase/extracellular signal‐regulated kinases, phosphatidylinositide 3‐kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP‐response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract‐mediated antidepressant activity.

  相似文献   


6.
Soluble N‐ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal‐associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA‐transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations.

  相似文献   


7.
Drugs acting at the serotonin‐2C (5‐HT2C) receptor subtype have shown promise as therapeutics in multiple syndromes including obesity, depression, and Parkinson's disease. While it is established that 5‐HT2C receptor stimulation inhibits DA release, the neural circuits and the localization of the relevant 5‐HT2C receptors remain unknown. This study used dual‐probe in vivo microdialysis to investigate the relative contributions of 5‐HT2C receptors localized in the rat substantia nigra (SN) and caudate‐putamen (CP) in the control of nigrostriatal DA release. Systemic administration (3.0 mg/kg) of the 5‐HT2C receptor selective agonist Ro 60‐0175 [(αS)‐6‐Chloro‐5‐fluoro‐α‐methyl‐1H‐indole‐1‐ethanamine fumarate] decreased, whereas intrastriatal infusions of the selective 5‐HT2C antagonist SB 242084 [6‐Chloro‐2,3‐dihydro‐5‐methyl‐N‐[6‐[(2‐methyl‐3‐pyridinyl)oxy]‐3‐pyridinyl]‐1H‐indole‐1‐carboxyamide; 1.0 μM] increased, basal DA in the CP. Depending on the site within the SN pars reticulata (SNpr), infusions of SB 242084 had more modest but significant effects. Moreover, infusions of the GABA‐A receptor agonist muscimol (10 μM) into the SNpr completely reversed the increases in striatal DA release produced by intrastriatal infusions of SB 242084. These findings suggest a role for 5‐HT2C receptors regulating striatal DA release that is highly localized. 5‐HT2C receptors localized in the striatum may represent a primary site of action that is mediated by the actions on GABAergic activity in the SN.

  相似文献   


8.
9.
The blood–brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra‐performance liquid chromatograph combined with a hybrid quadrupole time‐of‐flight mass spectrometer (UPLC‐MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to 125I‐albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule‐1, matrix‐metalloproteinase‐9 and P‐glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain.

  相似文献   


10.
Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5‐HT) system to decrease odorant cue [alarm substance (AS)]‐evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5‐HT system as well as to determine the involvement of the 5‐HT receptor subtypes in AS‐evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5‐HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS‐evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (< 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5‐HT1 and 5‐HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (< 0.001). From this, we conclude that Kiss1 modulates AS‐evoked fear responses mediated by the 5‐HT1A and 5‐HT2 receptors.

  相似文献   


11.
Neuro‐2a (N2a) neuroblastoma cells display an ectoenzymatic hydrolytic activity capable of degrading diadenosine polyphosphates. The ApnA‐cleaving activity has been analysed with the use of the fluorogenic compound BODIPY® FL guanosine 5′‐O‐(3‐thiotriphosphate) thioester. Hydrolysis of this dinucleotide analogue showed a hyperbolic kinetic with a Km value of 4.9 ± 1.3 μM. Diadenosine pentaphosphate, diadenosine tetraphosphate, diadenosine triphosphate, and the nucleoside monophosphate AMP behaved as an inhibitor of BODIPY® FL guanosine 5′‐O‐(3‐thiotriphosphate) thioester extracellular degradation. Ectoenzymatic activity shared the typical characteristics of the ectonucleotide pyrophosphatase/phosphodiesterase family, as hydrolysis reached maximal activity at alkaline pH and was dependent on the presence of divalent cations, being strongly inhibited by EDTA and activated by Zn2+ ions. Both NPP1 and NPP3 isozymes are expressed in N2a cells, their expression levels substantially changing when cells differentiate into a neuronal‐like phenotype. In this sense, it is relevant to point the expression pattern of the NPP3 protein, whose levels were drastically reduced in the differentiated cells, being almost completely absent after 24 h of differentiation. Enzymatic activity assays carried out with differentiated N2a cells showed that NPP1 is the main isozyme involved in the extracellular degradation of dinucleotides in these cells, this enzyme reducing its activity and changing its subcellular location following neuronal differentiation.

  相似文献   


12.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


13.
14.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


15.
Nucleic acid oxidation: an early feature of Alzheimer's disease   总被引:1,自引:0,他引:1  
Studies of oxidative damage during the progression of Alzheimer's disease (AD) suggest its central role in disease pathogenesis. To investigate levels of nucleic acid oxidation in both early and late stages of AD, levels of multiple base adducts were quantified in nuclear and mitochondrial DNA from the superior and middle temporal gyri (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of age‐matched normal control subjects, subjects with mild cognitive impairment, preclinical AD, late‐stage AD, and non‐AD neurological disorders (diseased control; DC) using gas chromatography/mass spectrometry. Median levels of multiple DNA adducts in nuclear and mitochondrial DNA were significantly (p ≤ 0.05) elevated in the SMTG, IPL, and CER in multiple stages of AD and in DC subjects. Elevated levels of fapyguanine and fapyadenine in mitochondrial DNA suggest a hypoxic environment early in the progression of AD and in DC subjects. Overall, these data suggest that oxidative damage is an early event not only in the pathogenesis of AD but is also present in neurodegenerative diseases in general.

  相似文献   


16.
Alzheimer's disease (AD) is a neurodegenerative disorder that represents the most common type of dementia among elderly people. Amyloid beta (Aβ) peptides in extracellular Aβ plaques, produced from the amyloid precursor protein (APP) via sequential processing by β‐ and γ‐secretases, impair hippocampal synaptic plasticity, and cause cognitive dysfunction in AD patients. Here, we report that Aβ peptides also impair another form of synaptic plasticity; cerebellar long‐term depression (LTD). In the cerebellum of commonly used AD mouse model, APPswe/PS1dE9 mice, Aβ plaques were detected from 8 months and profound accumulation of Aβ plaques was observed at 18 months of age. Biochemical analysis revealed relatively high levels of APP protein and Aβ in the cerebellum of APPswe/PS1dE9 mice. At pre‐Aβ accumulation stage, LTD induction, and motor coordination are disturbed. These results indicate that soluble Aβ oligomers disturb LTD induction and cerebellar function in AD mouse model.

  相似文献   


17.
18.
19.
X‐linked Adrenoleukodystrophy (X‐ALD), an inherited peroxisomal metabolic neurodegenerative disorder, is caused by mutations/deletions in the ATP‐binding cassette transporter (ABCD1) gene encoding peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Metabolic dysfunction in X‐ALD is characterized by the accumulation of very long chain fatty acids ≥ C22:0) in the tissues and plasma of patients. Here, we investigated the mitochondrial status following deletion of ABCD1 in B12 oligodendrocytes and U87 astrocytes. This study provides evidence that silencing of peroxisomal protein ABCD1 produces structural and functional perturbations in mitochondria. Activities of electron transport chain‐related enzymes and of citric acid cycle (TCA cycle) were reduced; mitochondrial redox status was dysregulated and the mitochondrial membrane potential was disrupted following ABCD1 silencing. A greater reduction in ATP levels and citrate synthase activities was observed in oligodendrocytes as compared to astrocytes. Furthermore, most of the mitochondrial perturbations induced by ABCD1 silencing were corrected by treating cells with suberoylanilide hydroxamic acid, an Histone deacetylase inhibitor. These observations indicate a novel relationship between peroxisomes and mitochondria in cellular homeostasis and the importance of intact peroxisomes in relation to mitochondrial integrity and function in the cell types that participate in the pathobiology of X‐ALD. These observations suggest suberoylanilide hydroxamic acid as a potential therapy for X‐ALD.

  相似文献   


20.
This study has shown that purified recombinant human α‐synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α‐synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α‐synuclein expression by specific siRNA. Furthermore, in wild‐type (non‐transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild‐type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α‐synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号