首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyanobacteria comprise a phylum defined by the capacity for oxygenic photosynthesis. Members of this phylum are frequently motile as well. Strains that display gliding or twitching motility across semisolid surfaces are powered by a conserved type IV pilus system (T4P). Among the filamentous, heterocyst-forming cyanobacteria, motility is usually confined to specialized filaments known as hormogonia, and requires the deposition of an associated hormogonium polysaccharide (HPS). The genes involved in assembly and export of HPS are largely undefined, and it has been hypothesized that HPS exits the outer membrane via an atypical T4P-driven mechanism. Here, several novel hps loci, primarily encoding glycosyl transferases, are identified. Mutational analysis demonstrates that the majority of these genes are essential for both motility and production of HPS. Notably, most mutant strains accumulate wild-type cellular levels of the major pilin PilA, but not extracellular PilA, indicating dysregulation of the T4P motors, and, therefore, a regulatory interaction between HPS assembly and T4P activity. A co-occurrence analysis of Hps orthologs among cyanobacteria identified an extended set of putative Hps proteins comprising most components of a Wzx/Wzy-type polysaccharide synthesis and export system. This implies that HPS may be secreted through a more canonical pathway, rather than a T4P-mediated mechanism.  相似文献   

3.
Many cyanobacteria exhibit surface motility powered by type 4 pili (T4P). In the model filamentous cyanobacterium Nostoc punctiforme, the T4P systems are arrayed in static, bipolar rings in each cell. The chemotaxis‐like Hmp system is essential for motility and the coordinated polar accumulation of PilA on cells in motile filaments, while the Ptx system controls positive phototaxis. Using transposon mutagenesis, a gene, designated hmpF, was identified as involved in motility. Synteny among filamentous cyanobacteria and the similar expression patterns for hmpF and hmpD imply that HmpF is part of the Hmp system. Deletion of hmpF produced a phenotype distinct from other hmp genes, but indistinguishable from pilB or pilQ. Both an HmpF‐GFPuv fusion protein, and PilA, as assessed by in situ immunofluorescence, displayed coordinated, unipolar localization at the leading pole of each cell. Reversals were modulated by changes in light intensity and preceded by the migration of HmpF‐GFPuv to the lagging cell poles. These results are consistent with a model where direct interaction between HmpF and the T4P system activates pilus extension, the Hmp system facilitates coordinated polarity of HmpF to establish motility, and the Ptx system modulates HmpF localization to initiate reversals in response to changes in light intensity.  相似文献   

4.
丝状体蓝藻藻殖段的分化及其调节机制   总被引:1,自引:0,他引:1  
钟泽璞  施定基 《植物学报》2000,17(3):204-210
本文介绍了丝状体蓝藻(亦称蓝细菌) 的藻殖段的分化及其调节机制。藻殖段与正常藻丝体的区别在于细胞形状、细胞内存有气囊和可移动的短而直的藻丝链等。本文对许多环境因子包括光和营养因素等促进或抑制藻殖段的分化进行了讨论;还介绍了念珠藻(Nostoc) ,单歧藻(Tolypothrix) 和眉藻(Calothrix)所具有复杂的细胞发育过程,即具气囊又可移动的藻殖段分化,异形胞分化以及营养细胞的补偿性色适应。这三种细胞类型的适应形成取决于两种不同的光受体系统。藻殖段和异形胞两者的分化可能取决于光合电子传递链;而营养细胞的补偿性色适应则受光敏色素的调节。此外,谷酰胺合成酶合成和活性调节的PII蛋白,在协同藻殖段分化、异形胞分化及营养细胞的补偿色适应中起重要作用。由于蓝藻藻殖段分化及其调节机制是一个新的研究领域,关于它的知识尚不完整,亟待人们加强研究。  相似文献   

5.
Three coccoid and two filamentous cyanobacterial strains were isolated from phototrophic biofilms exposed to intense solar radiation on lithic surfaces of the Parasurameswar Temple and Khandagiri caves, located in Orissa State, India. Based on to their morphological features, the three coccoid strains were assigned to the genera Gloeocapsosis and Gloeocapsa, while the two filamentous strains were assigned to the genera Leptolyngbya and Plectonema. Eleven to 12 neutral and acidic sugars were detected in the slime secreted by the five strains. The secretions showed a high affinity for bivalent metal cations, suggesting their ability to actively contribute to weakening the mineral substrata. The secretion of protective pigments in the polysaccharide layers, namely mycosporine amino acid-like substances (MAAs) and scytonemins, under exposure to UV radiation showed how the acclimation response contributes to the persistence of cyanobacteria on exposed lithoid surfaces in tropical areas.  相似文献   

6.
Motility in cyanobacteria is useful for purposes that range from seeking out favourable light environments to establishing symbioses with plants and fungi. No known cyanobacterium is equipped with flagella, but a diverse range of species is able to ‘glide’ or ‘twitch’ across surfaces. Cyanobacteria with this capacity range from unicellular species to complex filamentous forms, including species such as Nostoc punctiforme, which can generate specialised motile filaments called hormogonia. Recent work on the model unicellular cyanobacterium Synechocystis sp. PCC 6803 has shown that its means of propulsion has much in common with the twitching motility of heterotrophs such as Pseudomonas and Myxococcus. Movement depends on Type IV pili, which are extended, adhere to the substrate and then retract to pull the cell across the surface. Previous work on filamentous cyanobacteria suggested a very different mechanism, with movement powered by the directional extrusion of polysaccharide from pores close to the cell junctions. Now a new report by Khayatan and colleagues in this issue of Molecular Microbiology suggests that the motility of Nostoc hormogonia has much more in common with Synechocystis than was previously thought. In both cases, polysaccharide secretion is important for preparing the surface, but the directional motive force comes from Type IV pili.  相似文献   

7.
丝状体蓝藻藻殖段的分化及其调节机制   总被引:4,自引:0,他引:4  
本文介绍了丝状体蓝藻(亦称蓝细菌)的藻殖段的分化及其调节机制。藻殖段与正常藻丝体的区别在于细胞开状、细胞内存有气囊和可移动的短而真的藻丝链等。本文对许多环境因子包括光和营养因素等促进或抑制藻殖段的分化进行一讨论;还介绍了含球藻(Nostoc),单歧藻(Tolypothrix)和眉藻(Calothrix)所具有复杂的细胞发育过程,即具气囊又可移动的藻殖段分化,异形胞分化以及营养细胞的被偿性色适应。这  相似文献   

8.
Wrinkle structures are sedimentary features that are produced primarily through the trapping and binding of siliciclastic sediments by mat‐forming micro‐organisms. Wrinkle structures and related sedimentary structures in the rock record are commonly interpreted to represent the stabilizing influence of cyanobacteria on sediments because cyanobacteria are known to produce similar textures and structures in modern tidal flat settings. However, other extant bacteria such as filamentous representatives of the family Beggiatoaceae can also interact with sediments to produce sedimentary features that morphologically resemble many of those associated with cyanobacteria‐dominated mats. While Beggiatoa spp. and cyanobacteria are metabolically and phylogenetically distant, genomic analyses show that the two groups share hundreds of homologous genes, likely as the result of horizontal gene transfer. The comparative genomics results described here suggest that some horizontally transferred genes may code for phenotypic traits such as filament formation, chemotaxis, and the production of extracellular polymeric substances that potentially underlie the similar biostabilizing influences of these organisms on sediments. We suggest that the ecological utility of certain basic life modes such as the construction of mats and biofilms, coupled with the lateral mobility of genes in the microbial world, introduces an element of uncertainty into the inference of specific phylogenetic origins from gross morphological features preserved in the ancient rock record.  相似文献   

9.
1. Stoichiometric theory predicts that the nitrogen : phosphorus (N : P) ratio of recycled nutrients should increase when P‐rich zooplankton such as Daphnia become dominant. We used an enclosure study to test the hypothesis that an increased biomass of Daphnia will increase the relative availability of N versus P sufficiently to decrease the abundance of filamentous cyanobacteria. The experiment was conducted in artificially enriched Lake 227 (L227) in the Experimental Lakes Area (ELA), north‐western Ontario, Canada. Previous studies in L227 have shown that the dominance of filamentous, N‐fixing cyanobacteria is strongly affected by changes in the relative loading rates of N and P. 2. We used a 2 × 2 factorial design with the addition or absence of D. pulicaria and high or low relative loading rates of N and P (+NH4, –NH4) in small enclosures as treatment variables. If Daphnia can strongly affect filamentous cyanobacteria by altering N and P availability, these impacts should be greatest with low external N : P loading rates. The phytoplankton community of L227 was predominantly composed of filamentous Aphanizomenon spp. at the start of the experiment. 3. Daphnia strongly reduced filamentous cyanobacterial density in all enclosures to which they were added. The addition of NH4 had only a small impact on algal community composition. Hence, we conclude that Daphnia did not cause reductions in cyanobacteria by altering the N : P ratio of available nutrients. 4. Despite the lack of evidence that Daphnia affected filamentous cyanobacteria by altering the relative availability of N and P, we found changes in nutrient cycling consistent with other aspects of stoichiometric theory. In the presence of Daphnia, total P in the water column decreased because of an increase in P sedimentation. In contrast to P, a decrease in suspended particulate N was offset by an increase in dissolved N (especially NH4). Hence, dissolved and total N : P ratios in the water column increased with Daphnia as a result of differences in the fate of suspended particulate N versus P. There was minimal accumulation and storage of P in Daphnia biomass in the enclosures. 5. Our experiment demonstrated that Daphnia can strongly limit filamentous cyanobacterial abundance and affect the biogeochemical cycling of nutrients. In our study, changes in nutrient cycling were apparently insufficient to cause the changes in phytoplankton community composition that we observed. Daphnia therefore limited filamentous cyanobacteria by other mechanisms.  相似文献   

10.
Cyanobacterial diversity associated with sponges remains underestimated, though it is of great scientific interest in order to understand the ecology and evolutionary history of the symbiotic relationships between the two groups. Of the filamentous cyanobacteria, the genus Leptolyngbya is the most frequently found in association with sponges as well as the largest and obviously polyphyletic group. In this study, five Leptolyngbya‐like sponge‐associated isolates were investigated using a combination of molecular, chemical, and morphological approach and revealed a novel marine genus herein designated Leptothoe gen. nov. In addition, three new species of Leptothoe, Le. sithoniana, Le. kymatousa, and Le. spongobia, are described based on a suite of distinct characters compared to other marine Leptolyngbyaceae species/strains. The three new species, hosted by four sponge species, showed different degrees of host specificity. Leptothoe sithoniana and Le. kymatousa hosted by the sponges Petrosia ficiformis and Chondrilla nucula, respectively, seem to be more specialized than Le. spongobia, which was hosted by the sponges Dysidea avara and Acanthella acuta. All three species contained nitrogen‐fixing genes and may contribute to the nitrogen budget of sponges. Leptothoe spongobia TAU‐MAC 1115 isolated from Acanthella acuta was shown to produce microcystin‐RR indicating that microcystin production among marine cyanobacteria could be more widespread than previously determined.  相似文献   

11.
12.
The genetic diversity and phylogenetic position of 10 strains of picocyanobacteria from the Arabian Sea were examined using partial sequences from three loci: 16S rDNA, RNA polymerase rpoC1, and two elements of the phycoerythrin (PE) locus, cpeA and cpeB which encode for the α and β subunit of PE. Nine of the strains showed nearly identical spectral phenotypes based on the in vivo excitation spectrum for PE fluorescence emission and appear to be strains synthesizing a phycourobilin (PUB)–lacking PE. These strains include one, Synechococcus sp. G2.1, already known to be closely related to filamentous cyanobacteria and not to the commonly studied 5.1 subcluster of marine Synechococcus. The 10th strain was a PE‐lacking strain that was of interest because it was isolated from open‐ocean conditions where picocyanobacteria with this phenotype are relatively uncommon. Phylogenetic analysis of the concatenated 16S rDNA and rpoC1 data sets showed that none of the previously described strains were members of the 5.1 subcluster of marine Synechococcus, nor were they closely related to strain G2.1. Instead, they form a well‐supported and previously undescribed clade of cyanobacteria that is sister to Cyanobium. Thus, these strains represent the first PE‐containing Cyanobium from oceanic waters, and the lineage they define includes a strain with a PE‐lacking phenotype from the same environment. Analysis of the PE sequence data showed the PE apoprotein has evolved independently in the G2.1 lineage and the Cyanobium‐like lineage represented by the study strains. It also revealed a hypervariable region of the β‐subunit not described previously; variation in this region shows a pattern among a wide range of PE‐containing organisms congruent with the phylogenetic relationships inferred from other genes. This suggests that the PUB‐lacking spectral phenotype is more likely to have evolved in distantly related phylogenetic lineages by either divergent or convergent evolution than by lateral gene transfer. Both the conserved PE gene sequences and the inferred amino acid sequences for the hypervariable region show considerable divergence among Prochlorococcus PEs, red algal PEs, PUB‐containing PEs from the marine Synechococcus 5.1 subcluster, PEs from the Cyanobium‐like strains, and PEs from other cyanobacteria (including strain G2.1). Thus, it appears that the hypervariable region of the PE gene can be used as a taxon‐specific marker.  相似文献   

13.
14.
The central (serotype-specific) Region II of the Haemophilus influenzae Type b capsulation locus cap is 8.3 kb long and contains a cluster of four genes. We show that these genes, designated orf1 to orf4, are involved in the biosynthetic steps required for the formation of the Type b capsular polysaccharide and that orf1 probably encodes a CDP-ribitolpyrophosphorylase. We present evidence that growth of polysaccharide chains takes place through the alternating addition of single sugar nucleotides.  相似文献   

15.
The SSU (16S) rRNA gene was used to investigate the phylogeny of the cyanobacterial genus Lyngbya as well as examined for its capacity to discriminate between different marine species of Lyngbya. We show that Lyngbya forms a polyphyletic genus composed of a marine lineage and a halophilic/brackish/freshwater lineage. In addition, we found morphological and genetic evidence that Lyngbya spp. often grow in association with other microorganisms, in particular smaller filamentous cyanobacteria such as Oscillatoria, and propose that these associated microorganisms have led to extensive phylogenetic confusion in identification of Lyngbya spp. At the species level, the phylogenetic diversity obtained from the comparison of 16S rRNA genes exceeded morphological diversity in Lyngbya. However, the expectation that this improved phylogeny would be useful to species and subspecies identification was eliminated by the fact that phylogenetic species did not correlate in any respect with the species obtained from current taxonomic systems. In addition, phylogenetic identification was adversely affected by the presence of multiple gene copies within individual Lyngbya colonies. Analysis of clonal Lyngbya cultures and multiple displacement amplified (MDA) single‐cell genomes revealed that Lyngbya genomes contain two 16S rRNA gene copies, and that these typically are of variable sequence. Furthermore, intragenomic and interspecies 16S rRNA gene heterogeneity was approximately of the same magnitude. Hence, the intragenomic heterogeneity of the 16S rRNA gene overestimates the microdiversity of different strains and does not accurately reflect speciation within cyanobacteria, including the genus Lyngbya.  相似文献   

16.
Type 4 fimbriae are produced by a variety of pathogens, in which they appear to function in adhesion to epithelial cells, and in a form of surface translocation called twitching motility. Using transposon mutagenesis of Pseudomonas aeruginosa, we have identified a new locus required for fimbrial assembly. This locus contains the gene pilQ which encodes a 77 kDa protein with an N-terminal hydro-phobic signal sequence characteristic of secretory proteins, pilQ mutants lack the spreading colony morphology characteristic of twitching motility, are devoid of fimbriae, and are resistant to the fimbrial-specific bacteriophage PO4. The pilQ gene was mapped to Spel fragment 2, which is located at 0–5 minutes on the P. aeruginosa PAO1 chromosome, and thus it is not closely linked to the previously characterized pilA-D, pilS,R or pilT genes. The pilQ region also contains ponA, aroK and aroB-like genes in an organization very similar to that of corresponding genes in Escherichia coli and Haemophilus influenzae. The predicted amino acid sequence of PilQ shows homology to the PulD protein of Kleb-siella oxytoca and related outer membrane proteins which have been found in association with diverse functions in other species including protein secretion, DNA uptake and assembly of filamentous phage. PilQ had the highest overall homology to an outer membrane antigen from Neisseria gonorrhoeae, encoded by omc, that may fulfil the same role in type 4 fimbrial assembly in this species.  相似文献   

17.
Microscopy of organic-rich, sulfidic sediment samples of marine and freshwater origin revealed filamentous, multicellular microorganisms with gliding motility. Many of these neither contained sulfur droplets such as the Beggiatoa species nor exhibited the autofluorescence of the chlorophyll-containing cyanobacteria. A frequently observed morphological type of filamentous microorganism was enriched under anoxic conditions in the dark with isobutyrate plus sulfate. Two strains of filamentous, gliding sulfate-reducing bacteria, Tokyo 01 and Jade 02, were isolated in pure cultures. Both isolates oxidized acetate and other aliphatic acids. Enzyme assays indicated that the terminal oxidation occurs via the anaerobic C1 pathway (carbon monoxide dehydrogenase pathway). The 16S rRNA genes of the new isolates and of the two formerly described filamentous species of sulfate-reducing bacteria, Desulfonema limicola and Desulfonema magnum, were analyzed. All four strains were closely related to each other and affiliated with the δ-subclass of Proteobacteria. Another close relative was the unicellular Desulfococcus multivorans. Based on phylogenetic relationships and physiological properties, Strains Tokyo 01 and Jade 02 are assigned to a new species, Desulfonema ishimotoi. A new, fluorescently labeled oligonucleotide probe targeted against 16S rRNA was designed so that that it hybridized specifically with whole cells of Desulfonema species. Filamentous bacteria that hybridized with the same probe were detected in sediment samples and in association with the filamentous sulfur-oxidizing bacterium Thioploca in its natural habitat. We conclude that Desulfonema species constitute an ecologically significant fraction of the sulfate-reducing bacteria in organic-rich sediments and microbial mats. Received: 30 December 1998 / Accepted: 19 July 1999  相似文献   

18.
The formaldehyde-fixing enzymes, 3-Hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI), are the key enzymes catalyzing sequential reactions in the ribulose monophosphate (RuMP) pathway. In this study, we generated two fused gene constructs of the hps and phi genes (i.e., hpsphi and phihps) from a methylotrophic bacterium Mycobacterium gastri MB19. The gene product of hpsphi exhibited both HPS and PHI activities at room temperature and catalyzed the sequential reactions more efficiently than a simple mixture of the individual enzymes. The gene product of phihps failed to display any enzyme activity. Escherichia coli strains harboring the hpsphi gene consumed formaldehyde more efficiently and exhibited better growth in a formaldehyde-containing medium than the host strain. Our results demonstrate that the engineered fusion gene has the possibility to be used to establish a formaldehyde-resistance detoxification system in various organisms.  相似文献   

19.
20.
Summary Labeled probes carrying the Anabaena PCC 7120 nitrogenase (nifK and nifD) and nitrogenase reductase (nifH) genes were hybridized to Southern blots of DNA from diverse N2-fixing cyanobacteria in order to test a previous observation of different nif gene organization in nonheterocystous and heterocystous strains. The nif probes showed no significant hybridization to DNA from a unicellular cyanobacterium incapable of N2 fixation. All nonheterocystous cyanobacteria examined (unicellular and filamentous) had a contiguous nifKDH gene cluster whereas all of the heterocystous strains showed separation of nifK from contiguous nifDH genes. These findings suggest that nonheterocystous and heterocystous cyanobacteria have characteristic and fundamentally different nif gene arrangements. The noncontiguous nif gene pattern, as shown with two Het- mutants, is independent of phenotypic expression of heterocyst differentiation and aerobic N2-fixation. Thus nif arrangement could be a useful taxonomic marker to distinguish between phenotypically Het- heterocystous cyanobacteria and phylogenetically unrelated nonheterocystous strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号