首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen‐specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible‐to‐no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand‐crossed to both male‐sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000–40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male‐sterile tobacco, and 900–2100 seeds per male‐sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI‐driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species.  相似文献   

2.
Population genetics of transgene containment   总被引:6,自引:1,他引:5  
Several strategies have been proposed for creating transgenic cultivars from which transgene escape to wild relatives would seem unlikely; for example, to impede escape through pollen, a transgene could be inserted into chloroplast DNA (cpDNA), which in many crops is rarely transmitted through pollen. None of these strategies would be failsafe; for example, the rate of cpDNA transmission through pollen may be low but non‐zero in many crops. Here, we study how the probability distribution of escape time depends on the rates of pollen and seed flow from the crop to wild populations, the number and sizes of the wild populations, the selection coefficient for the transgene, and a leakage parameter characteristic of the strategy, for example, the rate of cpDNA transmission through pollen. We find that even with a leakage parameter as small as 10?3, the probability of escape within as few as 10 generations could be appreciable.  相似文献   

3.
In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.  相似文献   

4.
转基因逃逸是转基因作物环境释放的主要潜在生态风险,一旦把转基因和它的地理信息结合起来,地理信息系统(GIS)就成为监控转基因逃逸的理想工具,首先,可以根据转基因作物商业化生产情况建立一定数量的观察站,并在特定的地点和时间内检测野生近缘植物和其它一些相关植物中是否存在转基因,这样就可以获得在特定的地区和时期内转基因逃逸的大致状况,然后在此基础上,可以建立地区(省)或国家级转基因逃逸地理信息系统,国家级系统可能在风险管理中更有实际意义。  相似文献   

5.
Fast development and commercialization of genetically modified plants have aroused concerns of transgene escape and its environmental consequences. A model that can effectively predict pollen‐mediated gene flow (PMGF) is essential for assessing and managing risks from transgene escape. A pollen‐trap method was used to measure the wind‐borne pollen dispersal in cultivated rice and common wild rice, and effects of relative humidity, temperature and wind speed on pollen dispersal were estimated. A PMGF model was constructed based on the pollen dispersal pattern in rice, taking outcrossing rates of recipients and cross‐compatibility between rice and its wild relatives into consideration. Published rice gene flow data were used to validate the model. Pollen density decreased in a simple exponential pattern with distances to the rice field. High relative humidity reduced pollen dispersal distances. Model simulation showed an increased PMGF frequency with the increase of pollen source size (the area of a rice field), but this effect levelled off with a large pollen‐source size. Cross‐compatibility is essential when modelling PMGF from rice to its wild relatives. The model fits the data well, including PMGF from rice to its wild relatives. Therefore, it can be used to predict PMGF in rice under diverse conditions (e.g. different outcrossing rates and cross‐compatibilities), facilitating the determination of isolation distances to minimize transgene escape. The PMGF model may be extended to other wind‐pollinated plant species such as wheat and barley.  相似文献   

6.
Genetic use restriction technologies (GURTs), developed to secure return on investments through protection of plant varieties, are among the most controversial and opposed genetic engineering biotechnologies as they are perceived as a tool to force farmers to depend on multinational corporations' seed monopolies. In this work, the currently proposed strategies are described and compared with some of the principal techniques implemented for preventing transgene flow and/or seed saving, with a simultaneous analysis of the future perspectives of GURTs taking into account potential benefits, possible impacts on farmers and local plant genetic resources (PGR), hypothetical negative environmental issues and ethical concerns related to intellectual property that have led to the ban of this technology.  相似文献   

7.
Transgenic plant technology provides a powerful tool to improve abiotic stress tolerance of crop plants. However, introgression of stress tolerance genes into weedy relatives may increase the potential for persistence and invasiveness, resulting in undesirable ecological consequences. A variety of gene confinement strategies have been developed to reduce unwanted transgene movement. In this review, we discuss some of these strategies, such as male and female sterility, GeneSafe?, parthenocarpy, chloroplast transformation and gene deletor technologies. In the case of the gene deletor technology, all transgenes from pollen, seeds, fruits or other organs may be eliminated once the transgene functions are no longer needed at the stage when the presence of the transgene becomes a cause for ecological or public concern. The gene deletor and other technologies can be useful to reduce unintended dispersal of stress tolerance genes and thus may facilitate commercialization of transgenic crops with enhanced tolerance to abiotic stresses.  相似文献   

8.
Whether the potential costs associated with broad‐scale use of genetically modified organisms (GMOs) outweigh possible benefits is highly contentious, including within the scientific community. Even among those generally in favour of commercialization of GM crops, there is nonetheless broad recognition that transgene escape into the wild should be minimized. But is it possible to achieve containment of engineered genetic elements in the context of large scale agricultural production? In a previous study, Warwick et al. (2003) documented transgene escape via gene flow from herbicide resistant (HR) canola (Brassica napus) into neighbouring weedy B. rapa populations ( Fig. 1 ) in two agricultural fields in Quebec, Canada. In a follow‐up study in this issue of Molecular Ecology, Warwick et al. (2008) show that the transgene has persisted and spread within the weedy population in the absence of selection for herbicide resistance. Certainly a trait like herbicide resistance is expected to spread when selected through the use of the herbicide, despite potentially negative epistatic effects on fitness. However, Warwick et al.'s findings suggest that direct selection favouring the transgene is not required for its persistence. So is there any hope of preventing transgene escape into the wild?
Figure 1 Open in figure viewer PowerPoint Weedy Brassica rapa (orange flags) growing in a B. napus field. (Photo: MJ Simard)  相似文献   

9.
Pollen- and seed-mediated transgene flow is a concern in plant biotechnology. We report here a highly efficient 'genetically modified (GM)-gene-deletor' system to remove all functional transgenes from pollen, seed or both. With the three pollen- and/or seed-specific gene promoters tested, the phage CRE/ loxP or yeast FLP/ FRT system alone was inefficient in excising transgenes from tobacco pollen and/or seed, with no transgenic event having 100% efficiency. When loxP-FRT fusion sequences were used as recognition sites, simultaneous expression of both FLP and CRE reduced the average excision efficiency, but the expression of FLP or CRE alone increased the average excision efficiency, with many transgenic events being 100% efficient based on more than 25 000 T1 progeny examined per event. The 'GM-gene-deletor' reported here may be used to produce 'non-transgenic' pollen and/or seed from transgenic plants and to provide a bioconfinement tool for transgenic crops and perennials, with special applicability towards vegetatively propagated plants and trees.  相似文献   

10.
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.  相似文献   

11.
Transgenics from several forest tree species, carrying a number of commercially important recombinant genes, have been produced, and are undergoing confined field trials in a number of countries. However, there are questions and issues regarding stability of transgene expression and transgene dispersal that need to be addressed in long-lived forest trees. Variation in transgene expression is not uncommon in the primary transformants in plants, and is undesirable as it requires screening a large number of transformants in order to select transgenic lines with acceptable levels of transgene expression. Therefore, the current focus of plant transformation is toward fine tuning of transgene expression and stability in the transgenic forest trees. Although a number of studies have reported a relatively stable transgene expression for several target traits, including herbicide resistance, insect resistance, and lignin modification, there was also some unintended transgene instability in the genetically modified (GM) forest trees. Transgene dispersal from GM trees to feral forest populations and their containment remain important biological and regulatory issues facing commercial release of GM trees. Containment of transgenes must be in place to effectively prevent escape of transgenic pollen, seed, and vegetative propagules in economically important GM forest trees before their commercialization. Therefore, it is important to devise innovative technologies in genetic engineering that lead to genetically stable transgenic trees not only for qualitative traits (herbicide resistance, insect resistance), but also for quantitative traits (accelerated growth, increased height, increased wood density), and also prevent escape of transgenes in the forest trees.  相似文献   

12.
Cold tolerance in plants is an ecologically important trait that has been under intensive study for basic and applied reasons. Determining the fitness benefits and costs of cold tolerance has previously been difficult because cold tolerance is normally an induced trait that is not expressed in warm environments. The recent creation of transgenic plants constitutively expressing cold tolerance genes enables the investigation of the fitness consequences of cold tolerance in multiple temperature environments. We studied three genes from the CBF (C-repeat/dehydration responsive element binding factor) cold tolerance pathway, CBF1, 2 and 3, in Arabidopsis thaliana to test for benefits and costs of constitutive cold tolerance. We used multiple insertion lines for each transgene and grew the lines in cold and control conditions. Costs of cold tolerance, as determined by fruit number, varied by individual transgene. CBF2 and 3 overexpressers showed costs of cold tolerance, and no fitness benefits, in both environments. CBF1 overexpressing plants showed no fitness cost of cold tolerance in the control environment and showed a marginal fitness benefit in the cold environment. These results suggest that constitutive expression of traits that are normally induced in response to environmental stress will not always lead to costs in the absence of that stress, and that the ecological risks of CBF transgene escape should be assessed prior to their use in commercial agriculture.  相似文献   

13.
Low‐level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR‐6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR‐6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP‐B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP‐B, DHFR intron MAR element and MAR‐6. Additionally, as expected, the three MAR‐containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non‐MAR‐containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP‐B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.  相似文献   

14.
IL‐7 is a cytokine that is required for T‐cell development and homeostasis as well as for lymph node organogenesis. Despite the importance of IL‐7 in the immune system and its potential therapeutic relevance, questions remain regarding the sites of IL‐7 synthesis, specific cell types involved and molecular mechanisms regulating IL‐7 expression. To address these issues, we generated two bacterial artificial chromosome (BAC) transgenic mouse lines in which IL‐7 regulatory elements drive expression of either Cre recombinase or a human CD25 (hCD25) cell surface reporter molecule. Expression of the IL‐7.hCD25 BAC transgene, detected by reactivity with anti‐hCD25 antibody, mimicked endogenous IL‐7 expression. Fetal and adult tissues from crosses between IL‐7.Cre transgenic mice and Rosa26R or R26‐EYFP reporters demonstrated X‐gal or YFP staining in tissues known to express endogenous IL‐7 at some stage during development. These transgenic lines provide novel genetic tools to identify IL‐7 producing cells in various tissues and to manipulate gene expression selectively in IL‐7 expressing cells. genesis 47:281–287, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Targeted Genome Optimization (TGO) using site‐specific nucleases to introduce a DNA double‐strand break (DSB) at a specific target locus has broadened the options available to breeders for generation and combination of multiple traits. The use of targeted DNA cleavage in combination with homologous recombination (HR)‐mediated repair, enabled the precise targeted insertion of additional trait genes (2mepsps, hppd, axmi115) at a pre‐existing transgenic locus in cotton. Here we describe the expression and epigenome analyses of cotton Targeted Sequence Insertion (TSI) events over generations. In a subset of events, we observed variability in the level of transgene (hppd, axmi115) expression between independent but genetically identical TSI events. Transgene expression could also be differential within single events and variable over generations. This expression variability and silencing occurred independently of the transgene sequence and could be attributed to DNA methylation that was further linked to different DNA methylation mechanisms. The trigger(s) of transgene DNA methylation remains elusive but we hypothesize that targeted DSB induction and repair could be a potential trigger for DNA methylation.  相似文献   

16.
17.
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a‐deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a‐deficent CHO cell line based on Dnmt3a KO displayed an enhanced long‐term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a‐deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a‐deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.  相似文献   

18.
19.
Microprojectile bombardment to deliver DNA into plant cells represents a major breakthrough in the development of plant transformation technologies and accordingly has resulted in transformation of numerous species considered recalcitrant toAgrobacterium- or protoplast-mediated transformation methods. This article attempts to review the current understanding of the molecular and genetic behavior of transgenes introduced by microprojectile bombardment. The characteristic features of the transgene integration pattern resulting from DNA delivery via microprojectile bombardment include integration of the full length transgene as well as rearranged copies of the introduced DNA. Copy number of both the transgene and rearranged fragments is often highly variable. Most frequently the multiple transgene copies and rearranged fragments are inherited as a single locus. However, a variable proportion of transgenic events produced by microprojectile bombardment exhibit Mendelian ratios for monogenic and digenic segregation vs events exhibiting segregation distortion. The potential mechanisms underlying these observations are discussed.  相似文献   

20.
Genetically modified (GM) plants are rapidly becoming a common feature of modern agriculture. This transition to engineered crops has been driven by a variety of potential benefits, both economic and ecological. The increase in the use of GM crops has, however, been accompanied by growing concerns regarding their potential impact on the environment. Here, we focus on the escape of transgenes from cultivation via crop x wild hybridization. We begin by reviewing the literature on natural hybridization, with particular reference to gene flow between crop plants and their wild relatives. We further show that natural selection, and not the overall rate of gene flow, is the most important factor governing the spread of favorable alleles. Hence, much of this review focuses on the likely effects of transgenes once they escape. Finally, we consider strategies for transgene containment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号