首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart diseases such as myocardial infarction cause massive loss of cardiomyocytes, but the human heart lacks the innate ability to regenerate. In the adult mammalian heart, a resident progenitor cell population, termed epicardial progenitors, has been identified and reported to stay quiescent under uninjured conditions; however, myocardial infarction induces their proliferation and de novo differentiation into cardiac cells. It is conceivable to develop novel therapeutic approaches for myocardial repair by targeting such expandable sources of cardiac progenitors, thereby giving rise to new muscle and vasculatures. Human pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells can self‐renew and differentiate into the three major cell types of the heart, namely cardiomyocytes, smooth muscle, and endothelial cells. In this review, we describe our current knowledge of the therapeutic potential and challenges associated with the use of pluripotent stem cell and progenitor biology in cell therapy. An emphasis is placed on the contribution of paracrine factors in the growth of myocardium and neovascularization as well as the role of immunogenicity in cell survival and engraftment. (Part C) 96:98–107, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Background aimsIt has been demonstrated that transplantation of human cord blood-derived unrestricted somatic stem cells (USSC) in a porcine model of acute myocardial infarction (MI) significantly improved left ventricular (LV) function and prevented scar formation as well as LV dilation. Differentiation, apoptosis and macrophage mobilization at the infarct site could be excluded as the underlying mechanisms. The paracrine effect of the cells is most likely to be observed as the cause for the USSC treatment. The aim of our study was to examine the cardiomyocyte metabolism and the role of high-energy phosphates at the marginal infarct.MethodsUSSC were transplanted into the myocardium of the LV, which was supplied by a ligated circumflex artery. Forty-eight hours later, the hearts were harvested and biopsies were performed from the marginal infarct zone surrounding the site of the cell injection. The concentrations of creatinine phosphate (CP), adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) were determined by chromatography.ResultsThe concentration of ADP, ATP and CP in the marginal zone of the infarction was significantly higher in the USSC group. The mean global left ventricular ejection fraction (LVEF) (SD) was 64% (8%) before MI; post-MI, LVEF decreased to 35% (9%).ConclusionsPreservation of high-energy phosphates in the marginal infarct zone suggests that the preservation of energy reserves of surviving cardiomyocytes is a possible mechanism of action of transplanted stem cells in acutely ischemic myocardium.  相似文献   

3.
First described in 2004, endometrial stem cells (EnSCs) are adult stem cells isolated from the endometrial tissue. EnSCs comprise of a population of epithelial stem cells, mesenchymal stem cells, and side population stem cells. When secreted in the menstrual blood, they are termed menstrual stem cells or endometrial regenerative cells. Mounting evidence suggests that EnSCs can be utilized in regenerative medicine. EnSCs can be used as immuno-modulatory agents to attenuate inflammation, are implicated in angiogenesis and vascularization during tissue regeneration, and can also be reprogrammed into induced pluripotent stem cells. Furthermore, EnSCs can be used in tissue engineering applications and there are several clinical trials currently in place to ascertain the therapeutic potential of EnSCs. This review highlights the progress made in EnSC research, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo.  相似文献   

4.
Patients suffering from heart failure as a result of myocardial infarction are in need of heart transplantation. Unfortunately the number of donor hearts is very low and therefore new therapies are subject of investigation. Cell transplantation therapy upon myocardial infarction is a very promising strategy to replace the dead myocardium with viable cardiomyocytes, smooth muscle cells and endothelial cells, thereby reducing scarring and improving cardiac performance. Despite promising results, resulting in reduced infarct size and improved cardiac function on short term, only a few cells survive the ischemic milieu and are retained in the heart, thereby minimizing long-term effects. Although new capillaries and cardiomyocytes are formed around the infarcted area, only a small percentage of the transplanted cells can be detected months after myocardial infarction. This suggests the stimulation of an endogenous regenerative capacity of the heart upon cell transplantation, resulting from release of growth factor, cytokine and other paracrine molecules by the progenitor cells – the so-called paracrine hypothesis. Here, we focus on a relative new component of paracrine signalling, i.e. exosomes. We are interested in the release and function of exosomes derived from cardiac progenitor cells and studied their effects on the migratory capacity of endothelial cells.  相似文献   

5.
6.
The potential of cell therapy is promising in nerve regeneration, but is limited by ethical considerations about the proper and technically safe source of stem cells. We report the successful differentiation of human EnSCs (endometrial stem cells) as a rich source of renewable and safe progenitors into high-efficiency cholinergic neurons. The extracellular signals of NGF (nerve growth factor) and bFGF (basic fibroblast growth factor) could induce cholinergic neuron differentiation. ChAT (choline acetyltransferase), MAP2 (microtubule associated protein 2) and NF-l (neurofilament L) increased after administration of bFGF and NGF to the EnSC cultures. trkC and FGFR2 (fibroblast growth factor receptor 2), which belong to the NGF and bFGF receptors respectively, were determined in populations of EnSCs. NGF, bFGF and their combination differentially influenced human EnSCs high efficiency differentiation. By inducing cholinergic neurons from EnSCs in a chemically defined medium, we could produce human neural cells without resorting to primary culture of neurons. This in vitro method provides an unlimited source of human neural cells and facilitates clinical applications of EnSCs for neurological diseases.  相似文献   

7.
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct‐limiting effects in numerous experimental and clinical studies. However, recent meta‐analyses of randomized clinical trials on MSC‐based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three‐dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non‐genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.  相似文献   

8.
It has been reported that CXCR4‐overexpressing mesenchymal stem cells (MSCCX4) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4‐derived paracrine cardio‐protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4, and CXCR4 gene‐specific siRNA‐transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs‐conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation–regulating genes were assessed by real‐time polymerase chain reaction (RT‐PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium‐treated group than control group, while this proproliferative effect was reduced in CXCR4 gene‐specific siRNA‐transduced MSC–treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor‐β2 was observed in hypoxia‐exposed MSCCX4. In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.  相似文献   

9.
10.
Cardiac stromal cells (CSCs) can be derived from explant cultures, and a subgroup of these cells is viewed as cardiac mesenchymal stem cells due to their expression of CD90. Here, we sought to determine the therapeutic potential of CD90‐positive and CD90‐negative CSCs in a rat model of chronic myocardial infarction. We obtain CD90‐positive and CD90‐negative fractions of CSCs from rat myocardial tissue explant cultures by magnetically activated cell sorting. In vitro, CD90‐negative CSCs outperform CD90‐positive CSCs in tube formation and cardiomyocyte functional assays. In rats with a 30‐day infarct, injection of CD90‐negative CSCs augments cardiac function in the infarct in a way superior to that from CD90‐positive CSCs and unsorted CSCs. Histological analysis revealed that CD90‐negative CSCs increase vascularization in the infarct. Our results suggest that CD90‐negative CSCs could be a development candidate as a new cell therapy product for chronic myocardial infarction.  相似文献   

11.
Mesenchymal stem cells (MSC) are resident pluripotent cells of bone marrow stroma. MSC have the ability to differentiate into osteoblasts, chondroblasts and adipocytes, neurons, glia and also into cardiomyocytes. The problem of MSC use in cell therapy of various diseases and in myocardial infarction therapy is widely discussed at present. The experiments were carried out on the inbred line Wistar--Kyoto rats. Myocardial experimental infarction (EI) was induced by left descending coronary artery ligation. MSC were isolated from bone marrow, cultivated in vitro and injected into the tail vein on the day of experimental infarction operation. It was shown that the structure of injured myocardium in experimental group significantly differed from that in control group. MSC transplantation led to inflammatory process acceleration and to increased angiogenesis in the damaged myocardium; also, live cardiomyocyte layers were detected in the scar. As a result, ventricular dilatation and overload of the border zone of infarct region decreased, no features of infarction relapse were shown in the border zone.  相似文献   

12.
John A. Cairns 《CMAJ》1977,117(3):255-262
The majority of in-hospital deaths from acute myocardial infarction occur as a result of the “power failure” syndrome (severe congestive heart failure and cardiogenic shock), which results from extensive loss of myocardium. The death of myocardial cells is sequential over many hours. Surrounding the central zone of necrosis in an acute myocardial infarction is a zone of ischemic myocardium whose fate might be altered by interventions during the early phase of the infarction. ST-segment mapping, serial measurement of the serum concentration of creatine phosphokinase and myocardial imaging by means of radionuclides are being developed for the noninvasive assessment of infarct size in animals and humans. A number of interventions appear to limit infarct size in animals. There have been relatively few studies in humans to date, but preliminary results suggest that infarct size might be limited by certain interventions. The research has provided important practical benefits in terms of understanding the course of acute myocardial infarction and the potential effects of conventional therapies. For the present, interventions designed to limit infarct size remain in the realm of clinical research; routine clinical use would be inappropriate.  相似文献   

13.
14.
Mesenchymal stem cells (MSCs) are an attractive candidate for autologous cell therapy, but their ability to repair damaged myocardium is severely compromised with advanced age. Development of viable autologous cell therapy for treatment of heart failure in the elderly requires the need to address MSC ageing. In this study, MSCs from young (2 months) and aged (24 months) C57BL/6 mice were characterized for gene expression of IGF‐1, FGF‐2, VEGF, SIRT‐1, AKT, p16INK4a, p21 and p53 along with measurements of population doubling (PD), superoxide dismutase (SOD) activity and apoptosis. Aged MSCs displayed senescent features compared with cells isolated from young animals and therefore were pre‐conditioned with glucose depletion to enhance age affected function. Pre‐conditioning of aged MSCs led to an increase in expression of IGF‐1, AKT and SIRT‐1 concomitant with enhanced viability, proliferation and delayed senescence. To determine the myocardial repair capability of pre‐conditioned aged MSCs, myocardial infarction (MI) was induced in 24 months old C57BL/6 wild type mice and GFP expressing untreated and pre‐conditioned aged MSCs were transplanted. Hearts transplanted with pre‐conditioned aged MSCs showed increased expression of paracrine factors, such as IGF‐1, FGF‐2, VEGF and SDF‐1α. This was associated with significantly improved cardiac performance as measured by dp/dtmax, dp/dtmin, LVEDP and LVDP, declined left ventricle (LV) fibrosis and apoptosis as measured by Masson's Trichrome and TUNEL assays, respectively, after 30 days of transplantation. In conclusion, pre‐conditioning of aged MSCs with glucose depletion can enhance proliferation, delay senescence and restore the ability of aged cells to repair senescent infarcted myocardium.  相似文献   

15.
Background Previous study demonstrated the improvement of cardiac function was proportional to the number of cells implanted. Therefore, increasing cell survival in the infarcted myocardium might contribute to the improvement of the functional benefit of cell transplantation. Methods and results MSCs were treated with IGF-1 in vitro and infused into the acute myocardial infarction rats via the tail vein. After treatment of MSCs with IGF-1 for 48 h, flow cytometric analysis showed marked enhancement of expression of CXCR4 in the cell surface. After 4 weeks of transplantation, we found 1) a greater number of engrafted MSCs arrived and survived in the peri-infarct region; 2) TnT protein expression and capillary density were enhanced; 3) LV cavitary dilation, transmural infarct thinning, deposition of total collagen in the peri-infarct region and cardiac dysfunction were attenuated. Conclusion 1) IGF-1 treatment has time-dependent and dose-dependent effects on CXCR4 expression in MSCs in vitro. 2) IGF-1 improves the efficacy of MSCs transplantation in a rat model of myocardial infarction mainly via enhancement of the number of cells attracted into the infarcted heart. These findings provide a novel stem cell therapeutic avenue against ischemic heart disease.  相似文献   

16.
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI.  相似文献   

17.
Human mesenchymal stem cells (hMSC) have proven beneficial in the repair and preservation of infarcted myocardium. Unfortunately, MSCs represent a small portion of the bone marrow and require ex vivo expansion. To further advance the clinical usefulness of cellular cardiomyoplasty, derivation of "MSC-like" cells that can be made available "off-the-shelf" are desirable. Recently, human embryonic stem cell-derived mesenchymal cells (hESC-MC) were described. We investigated the efficacy of hESC-MC for cardiac repair after myocardial infarction (MI) compared to hMSC. Because of increased efficacy of cell delivery, cells were embedded into collagen patches and delivered to infarcted myocardium. Culture of hMSC and hESC-MCs in collagen patches did not induce differentiation or significant loss in viability. Transplantation of hMSC and hES-MC patches onto infarcted myocardium of athymic nude rats prevented adverse changes in infarct wall thickness and fractional area change compared to a non-viable patch control. Hemodynamic assessment showed that hMSCs and hES-MC patch application improved end diastolic pressure equivalently. There were no changes in systolic function. hES-MC and hMSC construct application enhanced neovessel formation compared to a non-viable control, and each cell type had similar efficacy in stimulating endothelial cell growth in vitro. In summary, the use of hES-MC provides similar efficacy for cellular cardiomyoplasty as compared to hMSC and may be considered a suitable alternative for cell therapy.  相似文献   

18.
Cardiac patch is considered a promising strategy for enhancing stem cell therapy of myocardial infarction (MI). However, the underlying mechanisms for cardiac patch repairing infarcted myocardium remain unclear. In this study, we investigated the mechanisms of PCL/gelatin patch loaded with MSCs on activating endogenous cardiac repair. PCL/gelatin patch was fabricated by electrospun. The patch enhanced the survival of the seeded MSCs and their HIF‐1α, Tβ4, VEGF and SDF‐1 expression and decreased CXCL14 expression in hypoxic and serum‐deprived conditions. In murine MI models, the survival and distribution of the engrafted MSCs and the activation of the epicardium were examined, respectively. At 4 weeks after transplantation of the cell patch, the cardiac functions were significantly improved. The engrafted MSCs migrated across the epicardium and into the myocardium. Tendency of HIF‐1α, Tβ4, VEGF, SDF‐1 and CXCL14 expression in the infarcted myocardium was similar with expression in vitro. The epicardium was activated and epicardial‐derived cells (EPDCs) migrated into deep tissue. The EPDCs differentiated into endothelial cells and smooth muscle cells, and some of EPDCs showed to have differentiated into cardiomyocytes. Density of blood and lymphatic capillaries increased significantly. More c‐kit+ cells were recruited into the infarcted myocardium after transplantation of the cell patch. The results suggest that epicardial transplantation of the cell patch promotes repair of the infarcted myocardium and improves cardiac functions by enhancing the survival of the transplanted cells, accelerating locality paracrine, and then activating the epicardium and recruiting endogenous c‐kit+ cells. Epicardial transplantation of the cell patch may be applied as a novel effective MI therapy.  相似文献   

19.
Certain cell types must expand their exocytic pathway to guarantee efficiency and fidelity of protein secretion. A spectacular case is offered by decidualizing human endometrial stromal cells (EnSCs). In the midluteal phase of the menstrual cycle, progesterone stimulation induces proliferating EnSCs to differentiate into professional secretors releasing proteins essential for efficient blastocyst implantation. Here, we describe the architectural rearrangements of the secretory pathway of a human EnSC line (TERT-immortalized human endometrial stromal cells (T-HESC)). As in primary cells, decidualization entails proliferation arrest and the coordinated expansion of the entire secretory pathway without detectable activation of unfolded protein response (UPR) pathways. Decidualization proceeds also in the absence of ascorbic acid, an essential cofactor for collagen biogenesis, despite also the secretion of some proteins whose folding does not depend on vitamin C is impaired. However, even in these conditions, no overt UPR induction can be detected. Morphometric analyses reveal that the exocytic pathway does not increase relatively to the volume of the cell. Thus, differently from other cell types, abundant production is guaranteed by a coordinated increase of the cell size following arrest of proliferation.  相似文献   

20.
Telocytes (TCs) were previously shown by our group to form a tandem with stem/progenitor cells in cardiac stem cell (CSC) niches, fulfilling various roles in cardiac renewal. Among these, the ability to ‘nurse’ CSCs in situ, both through direct physical contact (junctions) as well as at a distance, by paracrine signalling or through extracellular vesicles containing mRNA. We employed electron microscopy to identify junctions (such as gap or adherens junctions) in a co‐culture of cardiac TCs and CSCs. Gap junctions were observed between TCs, which formed networks, however, not between TCs and CSCs. Instead, we show that TCs and CSCs interact in culture forming heterocellular adherens junctions, as well as non‐classical junctions such as puncta adherentia and stromal synapses. The stromal synapse formed between TCs and CSCs (both stromal cells) was frequently associated with the presence of electron‐dense nanostructures (on average about 15 nm in length) connecting the two opposing membranes. The average width of the synaptic cleft was 30 nm, whereas the average length of the intercellular contact was 5 μm. Recent studies have shown that stem cells fail to adequately engraft and survive in the hostile environment of the injured myocardium, possibly as a result of the absence of the pro‐regenerative components of the secretome (paracrine factors) and/or of neighbouring support cells. Herein, we emphasize the similarities between the junctions described in co‐culture and the junctions identified between TCs and CSCs in situ. Reproducing a CSC niche in culture may represent a viable alternative to mono‐cellular therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号