首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

2.
Royal Palms (Roystonea regia) with symptoms such as severe chlorosis, stunting, collapse of older fronds and general decline were observed in the state of Selangor, Malaysia. Using polymerase chain reaction (PCR) amplification with phytoplasma universal primer pair P1/P7 followed by R16F2N/R16R2 and fU5/rU3 as nested PCR primer pairs, all symptomatic plants tested positively for phytoplasma. Results of phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with Royal Palm yellow decline (RYD) was an isolate of ‘Candidatus Phytoplasma asteris’ belonging to a new 16SrI‐subgroup. These results show that Roystonea regia is a new host for the aster yellows phytoplasma (16SrI). This is the first report on the presence of 16SrI phytoplasma on Royal Palm trees in Malaysia.  相似文献   

3.
Aster yellows phytoplasma were detected, for the first time, in peach trees in Al‐Jubiha and Homret Al‐Sahen area. Leaves of infected trees showed yellow or reddish, irregular water‐soaked blotches. Discoloured areas become dry and brittle and the dead tissues dropped out. Under severe infections, leaves fall down and fruits dropped prematurely. Phytoplasmas were detected from all symptomatic peach trees by polymerase chain reaction (PCR) using universal phytoplasmas primers P1/P7 followed by R16F2/R2. No amplification products were obtained from templates of asymptomatic peaches. PCR products (1.2 kb) used for restriction fragment length polymorphism analysis (RFLP) after digestion with endonuclease AluI, HpaII, KpnI and RsaI produced the same restriction profiles for all samples, and they were identical with those of American aster yellows (16SrI) phytoplasma strain. This paper is the first report on aster yellows phytoplasma affecting peach trees in Jordan.  相似文献   

4.
A survey for phytoplasma diseases was conducted in a sweet and sour cherry germplasm collection and in cherry orchards within the Czech Republic during 2014–2015. Phytoplasmas were detected in 21 symptomatic trees. Multiple infections of cherry trees by diverse phytoplasmas of 16SrI and 16SrX groups and 16SrI‐A, 16SrI‐B, 16SrI‐L, 16SrX‐A subgroups were detected by restriction fragment length polymorphism (RFLP). Nevertheless, phylogenetic analysis placed subgroups 16SrI‐B and 16SrI‐L inseparable together onto one branch of phylogenetic tree. This is the first report of subgroups 16SrI‐A and 16SrI‐L in Prunus spp., and subgroup 16SrX‐A in sour cherry trees. Additionally, novel RFLP profiles for 16SrI‐A and 16SrI‐B‐related phytoplasmas were found in cherry samples. Phytoplasmas with these novel profiles belong, however, to their respective 16SrI‐A or 16SrI‐B phylogenetic clades.  相似文献   

5.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

6.
During January 2010, severe stunting symptoms were observed in clonally propagated oil palm (Elaeis guineensis Jacq.) in West Godavari district, Andhra Pradesh, India. Leaf samples of symptomatic oil palms were collected, and the presence of phytoplasma was confirmed by nested polymerase chain reaction (PCR) using universal phytoplasma‐specific primer pairs P1/P7 followed by R16F2n/R16R2 for amplification of the 16S rRNA gene and semi‐nested PCR using universal phytoplasma‐specific primer pairs SecAfor1/SecArev3 followed by SecAfor2/SecArev3 for amplification of a part of the secA gene. Sequencing and BLAST analysis of the ~1.25 kb and ~480 bp of 16S rDNA and secA gene fragments indicated that the phytoplasma associated with oil palm stunting (OPS) disease was identical to 16SrI aster yellows group phytoplasma. Further characterization of the phytoplasma by in silico restriction enzyme digestion of 16S rDNA and virtual gel plotting of sequenced 16S rDNA of ~1.25 kb using iPhyClassifier online tool indicated that OPS phytoplasma is a member of 16SrI‐B subgroup and is a ‘Candidatus Phytoplasma asteris’‐related strain. Phylogenetic analysis of 16S rDNA and secA of OPS phytoplasma also grouped it with 16SrI‐B. This is the first report of association of phytoplasma of the 16SrI‐B subgroup phytoplasma with oil palm in the world.  相似文献   

7.
Recently, peach trees showing leaf rolling, little leaf, rosetting, yellowing, bronzing of foliage and tattered and shot‐holed leaves symptoms were observed in peach growing areas in the central and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR using phytoplasma universal primer pairs P1/Tint, R16F2/R2, PA2F/R and NPA2F/R were employed to detect phytoplasmas. The nested PCR assays detected phytoplasma infections in 51% of symptomatic peach trees in the major peach production areas in East Azerbaijan, Isfahan, ChaharMahal‐O‐Bakhtiari and Tehran provinces. Restriction fragment length polymorphism (RFLP) analyses of 485 bp fragments amplified using primer pair NPA2F/R in nested PCR revealed that the phytoplasmas associated with infected peaches were genetically different and they were distinct from phytoplasmas that have been associated with peach and almond witches’‐broom diseases in the south of Iran. Sequence analyses of partial 16S rDNA and 16S–23S rDNA intergenic spacer regions demonstrated that ‘Candidatus Phytoplasma aurantifolia’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ are prevalent in peach growing areas in the central and north‐western regions of Iran.  相似文献   

8.
Symptoms resembling those associated with phytoplasma presence were observed in pomegranate (Punica granatum L.) trees in June 2012 in the Aegean Region of Turkey (Ayd?n province). The trees exhibiting yellowing, reduced vigour, deformations and reddening of the leaves and die‐back symptoms were analysed to verify phytoplasma presence. Total nucleic acids were extracted from fresh leaf midribs and phloem tissue from young branches of ten symptomatic and five asymptomatic plants. Nested polymerase chain reaction assays using universal phytoplasma‐specific 16S rRNA and tuf gene primers were performed. Amplicons were digested with Tru1I, Tsp509I and HhaI restriction enzymes, according to the primer pair employed. The phytoplasma profiles were identical to each other and to aster yellows (16SrI‐B) strain when digestion was carried out on 16Sr(I)F1/R1 amplicons. However, one of the samples showed mixed profiles indicating that 16SrI‐B and 16SrXII‐A phytoplasmas were present when M1/M2 amplicons were digested, the reamplification of this sample with tuf cocktail primers allowed to verify the presence of a 16SrXII‐A profile. One pomegranate aster yellows strain AY‐PG from 16S rRNA gene and the 16SrXII‐A amplicon from tuf gene designed strain STOL‐PG were directly sequenced and deposited in GenBank under the Accession Numbers KJ818293 and KP161063, respectively. To our knowledge, this is the first report of 16SrI‐B and 16SrXII‐A phytoplasmas in pomegranate trees.  相似文献   

9.
Chinese cinnamon (Cinnamomum cassia Presl), an evergreen tree native to China, is a multifaceted medicinal plant. The stem bark of cinnamon is used worldwide in traditional and modern medicines and is one of the most popular cooking spices. In recent years, cinnamon with pronounced yellow leaf symptoms has been observed in their natural habitat in Hainan, China. Phytoplasmas were detected from symptomatic cinnamon trees via polymerase chain reaction using phytoplasma universal primers P1/P7 followed by R16F2n/R16R2. No amplification products were obtained from templates of asymptomatic cinnamon trees. These results indicated a direct association between phytoplasma infection and the cinnamon yellow leaf (CYL) disease. Sequence analysis of the CYL phytoplasma 16S rRNA gene determined that CYL phytoplasma is a ‘Candidatus Phytoplasma australasiae’‐related strain. Furthermore, virtual restriction fragment length polymorphism pattern analysis and phylogenetic studies showed that CYL phytoplasma belongs to the peanut witches’‐broom (16SrII) group, subgroup A. This is the first report of a 16SrII group phytoplasma infecting cinnamon under natural conditions.  相似文献   

10.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran.  相似文献   

11.
In 2010, cabbages (Brassica oleracea L.) showing symptoms of proliferated axillary buds, crinkled leaves and plant stunting with shortened internodes typical to phytoplasma infection were found in a breeding facility in Beijing, China. Three symptomatic plants and one symptomless plant were collected, and total DNA was extracted from the midrib tissue and the flowers. With phytoplasma universal primers R16F2n/R16R2, a special fragment of 1247 bp (16S rDNA) was obtained from all three symptomatic cabbage plants, but not from the one symptomless cabbage plant. The 16S rDNA sequence showed 99% similarity with the homologous genes of the aster yellows group phytoplasma (16SrI group), and the phytoplasma was designed as CWBp‐BJ. Phylogenetic and computer‐simulated restriction fragment length polymorphism (RFLP) analysis of the 16S rDNA gene revealed that CWBp‐BJ belongs to subgroup 16SrI‐B. This is the first report of a phytoplasma associated with cabbage witches’‐broom in China.  相似文献   

12.
Phytoplasma‐like symptoms were detected in date palm trees (Phoenix dactylifera L.) in Al‐Giza Governorate in Egypt. Symptoms varied from leaf chlorotic streaks, stunting and marked reduction in fruit and stalk sizes. Direct and nested PCR of symptomatic samples using P1/P7 and R16F2n/R16R2n primers, respectively, of the 16S rRNA gene, resulted in a DNA amplification product of c. 1.3 kbp. Symptomless samples collected from the same location and the healthy control produced no product upon amplification. Products were cloned into TOPO TA vector for sequencing. Data generated were deposited in the GenBank (Accession KF826615 ). A BLAST search showed that the sequence of the 16SrRNA gene shared ‘Candidatus Phytoplasma asteris’ (16SrI group) with other isolates. Phylogenetic analysis revealed that the isolate clustered with the date palm phytoplasma causing Al‐Wijam disease in Saudi Arabia.  相似文献   

13.
In 2012, yellowing of camellias was observed in Tai'an in Shandong province, China. Transmission electron microscopy (TEM) revealed phytoplasma in the phloem sieve tube elements of symptomatic plants. A specific fragment of phytoplasma 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the universal phytoplasma primers P1/P7 followed by R16F2n/R16R2. Sequence and restriction fragment length polymorphism (RFLP) analyses allowed us to classify the detected phytoplasma into the elm yellows (EY) group (16SrV), subgroup 16SrV‐B. Sequence analyses of the ribosomal protein (rp) gene confirmed a close relationship with phytoplasmas belonging to the rpV‐C subgroup. Thus, the phytoplasma associated with yellows disease in camellia, designated as ‘CY’, is a member of the 16SrV‐B subgroup. This is the first report of phytoplasma associated with camellia.  相似文献   

14.
During the survey of two successive years 2012–2013, in nearby places of Gorakhpur districts, Uttar Pradesh, India, Arundo donax plants were found to be exhibiting witches’ broom, excessive branching accompanied with little leaf symptoms with considerable disease incidence. Nested PCR carried out with universal primers pair R16F2n/R16R2 employing the PCR (P1/P7) product as a template DNA (1:20) resulted in expected size positive amplification ~1.2 kb in all symptom-bearing plants suggested the association of phytoplasma with witches’ broom disease of Narkat plants. BLASTn analysis of the 16S rRNA gene sequence showed the highest (99%) sequence identity with Candidatus phytoplasma asteris (16SrI group). In phylogenetic analysis, the sequence data showed close relationships with the members of 16SrI phytoplasma and clustered within a single clade of 16SrI group and closed to B subgroup representatives. This is a first report of 16Sr I-B group phytoplasma associated with witches’ broom accompanied with little leaf disease of Narkat in India.  相似文献   

15.
Symptoms of unknown aetiology on Rhododendron hybridum cv. Cunningham's White were observed in the Czech Republic in 2010. The infected plant had malformed leaves, with irregular shaped edges, mosaic, leaf tip necrosis and multiple axillary shoots with smaller leaves. Transmission electron microscopy showed phytoplasma‐like bodies in phloem cells of the symptomatic plant. Phytoplasma presence was confirmed by polymerase chain reaction using phytoplasma‐specific, universal and group‐specific primer pairs. Restriction fragment length polymorphism analysis of 16S rDNA enabled classification of the detected phytoplasma into the aster yellows subgroup I‐C. Sequence analysis of the 16S‐23S ribosomal operon of the amplified phytoplasma genome from the infected rhododendron plant (1724 bp) confirmed the closest relationship with the Czech Echinacea purpurea phyllody phytoplasma. These data suggest Rhododendron hybridum is a new host for the aster yellows phytoplasma subgroup 16SrI‐C in the Czech Republic and worldwide.  相似文献   

16.
During 2010–2013 surveys for the presence of phytoplasma diseases in Yazd province (Iran), a parsley witches’ broom (PrWB) disease was observed. Characteristic symptoms were excessive development of short spindly shoots from crown buds, little leaf, yellowing, witches’ broom, stunting, flower virescence and phyllody. The disease causative agent was dodder transmitted from symptomatic parsley to periwinkle and from periwinkle to periwinkle by grafting inducing phytoplasma‐type symptoms. Expected length DNA fragments of nearly 1800 and 1250 bp were, respectively, amplified from naturally infected parsley and experimentally inoculated periwinkle plants in direct polymerase chain reaction (PCR) using phytoplasma primer pair P1/P7 or nested PCR using the same primer pair followed by R16F2n/R16R2 primers. Restriction fragment length polymorphism and phylogenetic analyses of 16S rRNA gene sequences showed that the phytoplasma associated with PrWB disease in Yazd province belong to 16SrII‐D phytoplasma subgroup. This is the first report of association of a 16SrII‐related phytoplasma with PrWB disease in Iran.  相似文献   

17.
Prickly ash trees with shortened internodes, proliferation of shoots, phyllody and witches' brooms were observed for the first time in Korea. A phytoplasma was detected in infected trees by polymerase chain reaction amplification of 16S rDNA, 16S–23S intergenic spacer region and the fragment of rp operon sequences. The 16S rDNA sequences exhibited maximum (99.6%) similarity with Iranian lettuce phytoplasma, and the sequences of rp operon exhibited maximum (100%) similarity with golden rain phytoplasma. Based on the sequence analysis and phylogenetic studies, it was confirmed that phytoplasma infecting prickly ash trees in Korea belongs to the aster yellows group (subgroup 16SrI‐B).  相似文献   

18.
Severe growth abnormalities, including leaf yellowing, sprout proliferation and flower virescence and phyllody, were found on Brassica rapa subsp. pekinensis plants in Poland. The presence of phytoplasma in naturally infected plants was demonstrated by polymerase chain reaction assay employing phytoplasma universal P1/P7 followed by R16F2n/R16R2 primer pairs. The detected phytoplasma was identified using restriction fragment length polymorphism analysis (RFLP) of the 16S rRNA gene fragment with AluI, HhaI, MseI and RsaI endonucleases. After enzymatic digestion, all tested samples showed restriction pattern similar to that of ‘Candidatus phytoplasma asteris’. Nested PCR‐amplified products, obtained with primers R16F2n/R16R2, were sequenced. Sequences of the 16S rDNA gene fragment of analysed phytoplasma isolates were nearly identical. They revealed high nucleotide sequence identity (>98%) with corresponding sequences of other phytoplasma isolates from subgroup 16SrI‐B, and they were classified as members of ‘Candidatus phytoplasma asteris’. This is the first report of the natural occurrence of phytoplasma‐associated disease in plants of Chinese cabbage.  相似文献   

19.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A).  相似文献   

20.
Sandal (Santalum album) is an industrially important forest species in India, where it is devastated by sandal spike (SAS) disease. Diseased S. album trees show characteristic witches’ broom symptoms suspected to be caused by phytoplasma. Since the first report of occurrence of this disease at the end of 19th century, studies mainly have been carried out to detect SAS phytoplasma through various approaches. The causative agent, however, has remained poorly characterised at a molecular level. The present investigation was aimed to characterise the pathogen at this level. In nested PCR, a 1.4‐kb 16S rDNA fragment was amplified and analysed by restriction fragment length polymorphism using 17 restriction enzymes. The patterns were identical to those of strains AY1 and APh of the aster yellows subgroup 16SrI‐B, except for BfaI, which gave a different pattern. After cloning and sequencing, a phylogenetic analysis revealed the closest relationship to aster yellows subgroup 16SrI‐B members. Nucleotide sequence identity ranged from 99.2% to 99.5% with this subgroup. On the basis of these results, the SAS phytoplasma was classified as a member of subgroup 16SrI‐B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号