首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS‐Glud1 ?/? mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l ‐serine and d ‐serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal‐prefrontal cortex circuitry. Finally, hippocampus‐dependent contextual fear retrieval was deficient in CNS‐Glud1 ?/? mice, and c‐Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion‐dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal‐prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity‐induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders.  相似文献   

2.
Opioid receptor antagonist naltrexone reduces alcohol consumption and relapse in both humans and rodents. This study investigated whether hypothalamic proopiomelanocortin (POMC) neurons (producing beta‐endorphin and melanocortins) play a role in alcohol drinking behaviors. Both male and female mice with targeted deletion of two neuronal Pomc enhancers nPE1 and nPE2 (nPE?/?), resulting in hypothalamic‐specific POMC deficiency, were studied in short‐access (4‐h/day) drinking‐in‐the‐dark (DID, alcohol in one bottle, intermittent access (IA, 24‐h cycles of alcohol access every other day, alcohol vs. water in a two‐bottle choice) and alcohol deprivation effect (ADE) models. Wild‐type nPE+/+ exposed to 1‐week DID rapidly established stable alcohol drinking behavior with more intake in females, whereas nPE?/? mice of both sexes had less intake and less preference. Although nPE?/? showed less saccharin intake and preference than nPE+/+, there was no genotype difference in sucrose intake or preference in the DID paradigm. After 3‐week IA, nPE+/+ gradually escalated to high alcohol intake and preference, with more intake in females, whereas nPE?/? showed less escalation. Pharmacological blockade of mu‐opioid receptors with naltrexone reduced intake in nPE+/+ in a dose‐dependent manner, but had blunted effects in nPE?/? of both sexes. When alcohol was presented again after 1‐week abstinence from IA, nPE+/+ of both sexes displayed significant increases in alcohol intake (ADE or relapse‐like drinking), with more pronounced ADE in females, whereas nPE?/? did not show ADE in either sex. Our results suggest that neuronal POMC is involved in modulation of alcohol ‘binge’ drinking, escalation and ‘relapse’, probably via hypothalamic‐mediated mechanisms, with sex differences.  相似文献   

3.
Poly(ADP-ribose)polymerase (PARP) inhibitors prevent or alleviate diabetic nephropathy. This study evaluated the role for PARP-1 in diabetic kidney disease using the PARP-1-deficient mouse. PARP-1?/? and the wild-type (129S1/SvImJ) mice were made diabetic with streptozotocin, and were maintained for 12 weeks. Final blood glucose concentrations were increased ~ 3.7-fold in both diabetic groups. PARP-1 protein expression (Western blot analysis) in the renal cortex was similar in non-diabetic and diabetic wild-type mice (100% and 107%) whereas all knockouts were PARP-1-negative. PARP-1 gene deficiency reduced urinary albumin (ELISA) and protein excretion prevented diabetes-induced kidney hypertrophy, and decreased mesangial expansion and collagen deposition (both assessed by histochemistry) as well as fibronectin expression. Renal podocyte loss (immunohistochemistry) and nitrotyrosine and transforming growth factor-β1 accumulations (both by ELISA) were slightly lower in diabetic PARP-1?/? mice, but the differences with diabetic wild-type group did not achieve statistical significance. In conclusion, PARP-1?/? gene deficiency alleviates although does not completely prevent diabetic kidney disease.  相似文献   

4.
The glucocorticoid‐induced receptor (GIR) is a stress‐responsive gene that is abundantly expressed in forebrain limbic regions. Glucocorticoid‐induced receptor has been classified as a Neuropeptide Y‐like receptor, however, physiological attributes have not been investigated. In this study, mice lacking GIR (?/?) were screened in various paradigms related to stress, anxiety, activity, memory, fear and reward. GIR ?/? mice elicited behavioral insensitivity to the anxiogenic effects of restraint stress. However, hypothalamic pituitary adrenal axis response to stress was not impacted by GIR deficiency. Increased preference for sucrose was observed in GIR ?/? mice suggestive of modulation of reward‐associated behaviors by the receptor. A delayed acquisition of spatial learning was also observed in GIR ?/? mice. There were no effects of genotype on the modulation of anxiety‐like behavior, activity, fear‐conditioning and extinction. Our data extend previous studies on GIR regulation by glucocorticoids and provide novel evidence for a role of GIR in reward, learning and the behavioral outcomes of stress .  相似文献   

5.
6.
Decreased cerebral blood flow (CBF) has been observed following the resuscitation from neonatal hypoxic-ischemic injury, but its mechanism is not known. We address the hypothesis that reduced CBF is due to a change in nitric oxide (NO) and superoxide anion O(2)(-) balance secondary to endothelial NO synthase (eNOS) uncoupling with vascular injury. Wistar rats (7 day old) were subjected to cerebral hypoxia-ischemia by unilateral carotid occlusion under isoflurane anesthesia followed by hypoxia with hyperoxic or normoxic resuscitation. Expired CO(2) was determined during the period of hyperoxic or normoxic resuscitation. Laser-Doppler flowmetry was used with isoflurane anesthesia to monitor CBF, and cerebral perivascular NO and O(2)(-) were determined using fluorescent dyes with fluorescence microscopy. The effect of tetrahydrobiopterin supplementation on each of these measurements and the effect of apocynin and N(omega)-nitro-L-arginine methyl ester (L-NAME) administration on NO and O(2)(-) were determined. As a result, CBF in the ischemic cortex declined following the onset of resuscitation with 100% O(2) (hyperoxic resuscitation) but not room air (normoxic resuscitation). Expired CO(2) was decreased at the onset of resuscitation, but recovery was the same in normoxic and hyperoxic resuscitated groups. Perivascular NO-induced fluorescence intensity declined, and O(2)(-)-induced fluorescence increased in the ischemic cortex after hyperoxic resuscitation up to 24 h postischemia. L-NAME treatment reduced O(2)(-) relative to the nonischemic cortex. Apocynin treatment increased NO and reduced O(2)(-) relative to the nonischemic cortex. The administration of tetrahydrobiopterin following the injury increased perivascular NO, reduced perivascular O(2)(-), and increased CBF during hyperoxic resuscitation. These results demonstrate that reduced CBF follows hyperoxic resuscitation but not normoxic resuscitation after neonatal hypoxic-ischemic injury, accompanied by a reduction in perivascular production of NO and an increase in O(2)(-). The finding that tetrahydrobiopterin, apocynin, and L-NAME normalized radical production suggests that the uncoupling of perivascular NOS, probably eNOS, due to acquired relative tetrahydrobiopterin deficiency occurs after neonatal hypoxic-ischemic brain injury. It appears that both NOS uncoupling and the activation of NADPH oxidase participate in the changes of reactive oxygen concentrations seen in cerebral hypoxic-ischemic injury.  相似文献   

7.
Levels of ascorbic acid (AA) in the plasma, brain, and adrenal gland of rats were determined after 15 min of hypoxia (PaO2 less than 25 mm Hg) and following asphyxia. In rabbits, AA plasma levels were followed up to 75 min of reoxygenation following 15 min of hypoxia of the same severity. A significant increase (approximately 70%) in AA levels was found in plasma of rats and rabbits after hypoxia and asphyxia. This increase was found to be transient, with a return to normal levels within 1 h after resumption of normal oxygenation. Pretreatment with dexamethasone reduced the increase in AA level in both rabbits and rats. Adrenalectomy in rats, performed 24 h before the experiment, abolished the response to hypoxia. Ascorbate levels in the cerebral cortex, hypothalamus, and adrenal gland of awake rats subjected to hypoxia or asphyxia were found to be the same as in normoxic rats. Our results suggest that the observed changes in plasma AA levels are probably mediated through adrenocorticotropic hormone and that the adrenal gland is the major source of ascorbate efflux into the circulation during oxygen deprivation.  相似文献   

8.
The carboxyl terminus of Hsp70‐interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP?/?) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild‐type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone‐assisted selective autophagy, a process that is associated with exercise‐induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP?/? mice with voluntary exercise. CHIP?/? mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP?/? mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In rodents, the barrel cortex is a specialized area within the somatosensory cortex that processes signals from the mystacial whiskers. We investigated the normal development of myelination in the barrel cortex of mice, as well as the effects of sensory deprivation on this pattern. Deprivation was achieved by trimming the whiskers on one side of the face every other day from birth. In control mice, myelin was not present until postnatal day 14 and did not show prominence until postnatal day 30; adult levels of myelination were reached by the end of the second postnatal month. Unbiased stereology was used to estimate axon density in the interbarrel septal region and barrel walls as well as the barrel centers. Myelin was significantly more concentrated in the interbarrel septa/barrel walls than in the barrel centers in both control and sensory‐deprived conditions. Sensory deprivation did not impact the onset of myelination but resulted in a significant decrease in myelinated axons in the barrel region and decreased the amount of myelin ensheathing each axon. Visualization of the oligodendrocyte nuclear marker Olig2 revealed a similar pattern of myelin as seen using histochemistry, but with no significant changes in Olig2+ nuclei following sensory deprivation. Consistent with the anatomical results showing less myelination, local field potentials revealed slower rise times following trimming. Our results suggest that myelination develops relatively late and can be influenced by sensory experience. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

10.
Schizophrenia is a hereditary disease that approximately 1% of the worldwide population develops. Many studies have investigated possible underlying genes related to schizophrenia. Recently, clinical studies suggested sterol regulatory element‐binding protein (SREBP) as a susceptibility gene in patients with schizophrenia. SREBP controls cellular lipid homeostasis by three isoforms: SREBP‐1a, SREBP‐1c and SREBP‐2. This study used SREBP‐1c knockout (KO) mice to examine whether a deficiency in SREBP‐1c would affect their emotional and psychiatric behaviors. Altered mRNA expression in genes downstream from SREBP‐1c was confirmed in the brains of SREBP‐1c KO mice. Schizophrenia‐like behavior, including hyperactivity during the dark phase, depressive‐like behavior, aggressive behavior and deficits in social interaction and prepulse inhibition, was observed in SREBP‐1c KO mice. Furthermore, increased volume of the lateral ventricle was detected in SREBP‐1c KO mice. The mRNA levels of several γ‐aminobutyric acid (GABA)‐receptor subtypes and/or glutamic acid decarboxylase 65/67 decreased in the hippocampus and medial prefrontal cortex of SREBP‐1c KO mice. Thus, SREBP‐1c deficiency may contribute to enlargement of the lateral ventricle and development of schizophrenia‐like behaviors and be associated with altered GABAergic transmission.  相似文献   

11.
12.
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R?/?mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic–pituitary–adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R?/? mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R?/? mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R?/? mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R?/? mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R?/? mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R?/? mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.  相似文献   

13.
Our previous work showed that vitamin C deficiency caused about a 70-80% decrease in the incorporation of [35S]sulfate into proteoglycan of guinea pig costal cartilage, coordinately with a decrease in collagen synthesis (Bird, T. A., Spanheimer, R. G., and Peterkofsky, B. (1986) Arch. Biochem. Biophys. 246, 42-51). We examined the mechanism for decreased proteoglycan synthesis by labeling normal and scorbutic cartilage in vitro with radioactive precursors. Proteoglycan monomers from scorbutic tissue were of a slightly smaller average hydrodynamic size than normal but there was no difference in the size of the glycosaminoglycan chains isolated after papain digestion. The type of glycosaminoglycans synthesized and the degree of sulfation were unaffected as determined by chondroitinase ABC digestion and duel labeling with [35S]sulfate and [3H]glucosamine. Conversion of [3H]glucosamine to [3H]galactosamine also was unimpaired. There was about a 40% decrease in core protein synthesis, measured by [14C]serine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nevertheless, decreased incorporation of [35S]sulfate into scorbutic tissue persisted in the presence of p-nitrophenyl-beta-D-xyloside and cycloheximide, which indicated that the site of the scorbutic defect was beyond core protein synthesis and xylosylation. Galactosyltransferase activity in scorbutic cartilage decreased to about one-third the levels in control samples in parallel with the decreases in proteoglycan and collagen synthesis. Our results suggest that the step catalyzed by this enzyme activity, the addition of galactose to xylose prior to chondroitin sulfate chain elongation, is the major site of the scorbutic defect in proteoglycan synthesis. Decreased enzyme activity may be related to increased cortisol levels in scorbutic serum.  相似文献   

14.
Katagiri H  Fagiolini M  Hensch TK 《Neuron》2007,53(6):805-812
Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.  相似文献   

15.
Pham TA  Impey S  Storm DR  Stryker MP 《Neuron》1999,22(1):63-72
Neuronal activity-dependent processes are believed to mediate the formation of synaptic connections during neocortical development, but the underlying intracellular mechanisms are not known. In the visual system, altering the pattern of visually driven neuronal activity by monocular deprivation induces cortical synaptic rearrangement during a postnatal developmental window, the critical period. Here, using transgenic mice carrying a CRE-lacZ reporter, we demonstrate that a calcium- and cAMP-regulated signaling pathway is activated following monocular deprivation. We find that monocular deprivation leads to an induction of CRE-mediated lacZ expression in the visual cortex preceding the onset of physiologic plasticity, and this induction is dramatically downregulated following the end of the critical period. These results suggest that CRE-dependent coordinate regulation of a network of genes may control physiologic plasticity during postnatal neocortical development.  相似文献   

16.
Our recent studies suggested that decreased collagen synthesis in bone and cartilage of scorbutic guinea pigs was not related to ascorbate-dependent proline hydroxylation. The decrease paralleled scurvy-induced weight loss and reduced proteoglycan synthesis. Those results led us to propose that the effects of ascorbate deficiency on extracellular matrix synthesis were caused by changes in humoral factors similar to those that occur in fasting. Here we present evidence for this proposal. Exposure of chick embryo chondrocytes to scorbutic guinea pig serum, in the presence of ascorbate, led to effects on extracellular matrix synthesis similar to those seen in scorbutic animals. The rates of collagen and proteoglycan synthesis were reduced to approximately 30-50% of the levels in cells cultured in normal guinea pig serum plus ascorbate, but proline hydroxylation and procollagen secretion were unaffected. Similar results were obtained with serum from fasted guinea pigs supplemented in vivo with ascorbate. The growth rate of the chondrocytes was not significantly affected by scorbutic guinea pig serum.  相似文献   

17.
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are the major polyunsaturated fatty acids (PUFA) in the neuronal membrane. Most DHA and AA accumulation in the brain occurs during the perinatal period via placenta and milk. This study examined whether maternal brain levels of DHA and AA are depleted during pregnancy and lactation due to meeting the high demand of the developing nervous system in the offspring and evaluated the effects of the reproductive cycle on serotonin metabolism and of fish oil (FO) on postpartum anxiety. Pregnant rats were fed during pregnancy and lactation with a sunflower oil-based n-3 PUFA-deficient diet without or with FO supplementation, which provided 0.37% of the energy source as n-3 PUFA, and the age-matched virgin rats were fed the same diets for 41 days. In both sets of postpartum rats, decreased DHA levels compared to those in virgin females were seen in the hypothalamus, hippocampus, frontal cortex, cerebellum, olfactory bulb and retina, while AA depletion was seen only in the hypothalamus, hippocampus and frontal cortex. Serotonin levels were decreased and turnover increased in the brainstem and frontal cortex in postpartum rats compared to virgin rats. FO supplementation during pregnancy and lactation prevented the decrease in maternal brain regional DHA levels, inhibited monoamine oxidase-A activity in the brainstem and decreased anxiety-like behavior. We propose that the reproductive cycle depletes maternal brain DHA levels and modulates maternal brain serotonin metabolism to cause postpartum anxiety and suggest that FO supplementation may be beneficial for postpartum anxiety in women on an n-3 PUFA-deficient diet.  相似文献   

18.
The green alga Parietochloris incisa contains a significant amount of the nutritionally valuable polyunsaturated fatty acid and arachidonic acid (AA) and is being considered for mass cultivation for commercial AA production. This study was primarily aimed to define a practical medium formulation that can be used in commercial mass cultivation that will contribute to a substantial increase in the AA productivity of P. incisa with concomitant reduction of nutritional cost. The effect of nutrient limitation on growth and AA content of this microalga was explored in a batch culture in outdoor conditions using a vertical tubular photobioreactor. The study was conducted in two parts: the first was primarily focused on the effect of different nitrogen concentration on growth and AA content and the second part compares nitrogen deprivation, combination of nitrogen and phosphorus deprivation, and combined overall nutrient limitations at different levels of deprivation under low and high population densities. Since complete nitrogen deprivation hampers lipid and AA accumulation of P. incisa, thus, a critical value of nitrogen supply that will activate AA accumulation must be elucidated under specific growth conditions. Under the present experimental conditions, 0.5?g(-1) sodium nitrate obtained a higher AA productivity and volumetric yield relative to the nitrogen-deprived culture corresponding to 36.32?mg?L(-1)?day(-1) and 523.19?mg?L(-1). The combined nitrogen and phosphorus limitation seemed to enhance AA productivity better than nitrogen deprivation alone. The effect of overall nutrient limitation indicates that acute nutrient deficiency can trigger rapid lipid and AA syntheses. The effect of light as a consequence of culture cell density was also discussed. This study therefore shows that the nutrient cost can be greatly reduced by adjusting the nutrient levels and culture density to induce AA accumulation in P. incisa.  相似文献   

19.
Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia have an expansive array of reported genetic and environmental contributing factors. However, none of these factors alone can account for a substantial proportion of cases of either disorder. Instead, many gene‐by‐environment interactions are responsible for neurodevelopmental disturbances that lead to these disorders. The current experiment used heterozygous knock‐out mice to examine a potential interaction between 2 factors commonly linked to neurodevelopmental disorders and cognitive deficit: imbalanced excitatory/inhibitory signaling in the cortex and prenatal stress (PNS) exposure. Both of these factors have been linked to disrupt GABAergic signaling in the prefrontal cortex (PFC), a common feature of neurodevelopmental disorders. The neuronal PAS domain protein 4 (Npas4) gene is instrumental in regulation of the excitatory/inhibitory balance in the cortex and hippocampus in response to activation. Npas4 heterozygous and wild‐type male and female mice were exposed to either PNS or standard gestation, then evaluated during adulthood in social and anxiety behavioral measures. The combination of PNS and Npas4 deficiency in male mice impaired social recognition. This behavioral deficit was associated with decreased parvalbumin and cFos protein expression in the infralimbic region of the PFC following social stimulation in Npas4 heterozygous males. In contrast, females displayed fewer behavioral effects and molecular changes in PFC in response to PNS and decreased Npas4.  相似文献   

20.
Leukocyte infiltration, mediated by chemokines, is a key step in the development of organ dysfunction. Lung and liver neutrophil infiltration following trauma-hemorrhage is associated with upregulation of monocyte chemoattractant protein-1 (MCP-1). Because MCP-1 is not a major attractant for neutrophils, we hypothesized that MCP-1 influences neutrophil infiltration via regulation of keratinocyte-derived chemokines (KC). To study this, male C3H/HeN mice were pretreated with MCP-1 antiserum or control serum and subjected to trauma-hemorrhage or sham operation. Animals were killed 4 h after resuscitation. One group of trauma-hemorrhage mice receiving MCP-1 antiserum was also treated with murine KC during resuscitation. Plasma levels and tissue content of MCP-1 and KC were determined by cytometric bead arrays. Immunohistochemistry was performed to determine neutrophil infiltration; organ damage was assessed by edema formation. Treatment with MCP-1 antiserum significantly decreased systemic, lung, and liver levels of MCP-1 and KC following trauma-hemorrhage. This decrease in MCP-1 levels was associated with decreased neutrophil infiltration and edema formation in lung and liver following trauma-hemorrhage. Restitution of KC in mice treated with MCP-1 antiserum restored tissue neutrophil infiltration and edema. These results lead us to conclude that increased levels of MCP-1 cause neutrophil accumulation and distant organ damage by regulating KC production during the postinjury inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号