首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram‐negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C‐terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.  相似文献   

3.
Type III secretion apparatus (T3SA) are complex nanomachines that insert a translocation pore into the host cell membrane through which effector proteins are injected into the cytosol. In Shigella, the pore is inserted by a needle tip complex that also controls secretion. IpaD is the key protein that rules the composition of the tip complex before and upon cell contact or Congo red (CR) induction. However, how IpaD is involved in secretion control and translocon insertion remains not fully understood. Here, we report the phenotypic analysis of 20 10‐amino acids deletion variants all along the coiled‐coil and the central domains of IpaD (residues 131–332). Our results highlight three classes of T3S phenotype; (i) wild‐type secretion, (ii) constitutive secretion of all classes of effectors, and (iii) constitutive secretion of translocators and early effectors, but not of late effectors. Our data also suggest that the composition of the tip complex defines both the T3SA inducibility state and late effectors secretion. Finally, we shed light on a new aspect regarding the contact of the needle tip with cell membrane by uncoupling the Shigella abilities to escape macrophage vacuole, and to insert the translocation pore or to invade non‐phagocytic cells.  相似文献   

4.
Type III secretion systems (T3SSs) are key determinants of virulence in many Gram-negative bacteria, including animal and plant pathogens. They inject 'effector' proteins through a 'needle' protruding from the bacterial surface directly into eukaryotic cells after assembly of a 'translocator' pore in the host plasma membrane. Secretion is a tightly regulated process, which is blocked until physical contact with a host cell takes place. Host cell sensing occurs through a distal needle 'tip complex' and translocators are secreted before effectors. MxiC, a Shigella T3SS substrate, prevents premature effector secretion. Here, we examine how the different parts of T3SSs work together to allow orderly secretion. We show that T3SS assembly and needle tip composition are not altered in an mxiC mutant. We find that MxiC not only represses effector secretion but that it is also required for translocator release. We provide genetic evidence that MxiC acts downstream of the tip complex and then the needle during secretion activation. Finally, we show that the needle controls MxiC release. Therefore, for the first time, our data allow us to propose a model of secretion activation that goes from the tip complex to cytoplasmic MxiC via the needle.  相似文献   

5.
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ∼20 individual protein components that form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.  相似文献   

6.
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi‐Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane‐integral pore, and the hydrophilic ‘tip complex’ translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food‐borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi‐Spa family. We used invasion‐deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi‐Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in‐depth survey of the functional interchangeability of Inv/Mxi‐Spa T3SS proteins acting directly at the host‐pathogen interface.  相似文献   

7.
Type III secretion (T3S), a protein export pathway common to Gram‐negative pathogens, comprises a trans‐envelope syringe, the injectisome, with a cytoplasm‐facing translocase channel. Exported substrates are chaperone‐delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first “translocators”, then “effectors”. We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane‐associated pseudo‐effector SepL and its chaperone SepD. This renders SepL a high‐affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD‐coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.  相似文献   

8.
Yersinia pseudotuberculosis uses a type III secretion system (T3SS) to deliver effectors into host cells. A key component of the T3SS is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted, composed of the YscF protein. To study needle assembly, we performed a screen for dominant‐negative yscF alleles that prevented effector secretion in the presence of wild‐type (WT) YscF. One allele, yscF‐L54V, prevents WT YscF secretion and needle assembly, although purified YscF‐L54V polymerizes in vitro. YscF‐L54V binds to its chaperones YscE and YscG, and the YscF‐L54V–EG complex targets to the T3SS ATPase, YscN. We propose that YscF‐L54V stalls at a binding site in the needle assembly pathway following its release from the chaperones, which blocks the secretion of WT YscF and other early substrates required for building a needle. Interestingly, YscF‐L54V does not affect the activity of pre‐assembled actively secreting machines, indicating that a factor and/or binding site required for YscF secretion is absent from T3SS machines already engaged in effector secretion. Thus, substrate switching may involve the removal of an early substrate‐specific binding site as a mechanism to exclude early substrates from Yop‐secreting machines.  相似文献   

9.
The T3SS (type III secretion system) is a multi-protein complex that plays a central role in the virulence of many gram-negative bacterial pathogens. This apparatus spans both bacterial membranes and transports virulence factors from the bacterial cytoplasm into eukaryotic host cells. The T3SS exports substrates in a hierarchical and temporal manner. The first secreted substrates are the rod/needle proteins which are incorporated into the T3SS apparatus and are required for the secretion of later substrates, the translocators and effectors. In the present study, we provide evidence that rOrf8/EscI, a poorly characterized locus of enterocyte effacement-encoded protein, functions as the inner rod protein of the T3SS of EPEC (enteropathogenic Escherichia coli). We demonstrate that EscI is essential for type III secretion and is also secreted as an early substrate of the T3SS. We found that EscI interacts with EscU, the integral membrane protein that is linked to substrate specificity switching, implicating EscI in the substrate-switching event. Furthermore, we showed that EscI self-associates and interacts with the outer membrane secretin EscC, further supporting its function as an inner rod protein. Overall, the results of the present study suggest that EscI is the YscI/PrgJ/MxiI homologue in the T3SS of attaching and effacing pathogens.  相似文献   

10.
The export of bacterial toxins across the bacterial envelope requires the assembly of complex, membrane‐embedded protein architectures. Pseudomonas aeruginosa employs type III secretion (T3S) injectisome to translocate exotoxins directly into the cytoplasm of a target eukaryotic cell. This multi‐protein channel crosses two bacterial membranes and extends further as a needle through which the proteins travel. We show in this work that PscI, proposed to form the T3S system (T3SS) inner rod, possesses intrinsic properties to polymerize into flexible and regularly twisted fibrils and activates IL‐1β production in mouse bone marrow macrophages in vitro. We also found that point mutations within C‐terminal amphipathic helix of PscI alter needle assembly in vitro and T3SS function in cell infection assays, suggesting that this region is essential for an efficient needle assembly. The overexpression of PscF partially compensates for the absence of the inner rod in PscI‐deficient mutant by forming a secretion‐proficient injectisome. All together, we propose that the polymerized PscI in P. aeruginosa optimizes the injectisome function by anchoring the needle within the envelope‐embedded complex of the T3S secretome and – contrary to its counterpart in Salmonella – is not involved in substrate switching.  相似文献   

11.
Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 Å and 2.8 Å limiting resolution, respectively. These newly identified domains are composed of extended-length (114 Å in IpaB and 71 Å in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.  相似文献   

12.
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called ‘pathogen‐associated molecular patterns’ (PAMPs). Pathogens use virulence factors to counteract PAMP‐directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram‐negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP‐directed responses and are critical for infection. A plasmid‐encoded T3SS in the human‐pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences.  相似文献   

13.
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n‐octyl‐oligo‐oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N‐dimethyldodecylamine N‐oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size‐dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.  相似文献   

14.
Infection of colonic epithelial cells by Shigella is associated with the type III secretion system, which serves as a molecular syringe to inject effectors into host cells. This system includes an extracellular needle used as a conduit for secreted proteins. Two of these proteins, IpaB and IpaD, dock at the needle tip to control secretion and are also involved in the insertion of a translocation pore into host cell membrane allowing effector delivery. To better understand the function of IpaD, we substituted thirteen residues conserved among homologous proteins in other bacterial species. Generated variants were tested for their ability to surface expose IpaB and IpaD, to control secretion, to insert the translocation pore, and to invade host cells. In addition to a first group of seven ipaD variants that behaved similarly to the wild-type strain, we identified a second group with mutations V314D and I319D that deregulated secretion of all effectors, but remained fully invasive. Moreover, we identified a third group with mutations Y153A, T161D, Q165L and Y276A, that exhibited increased levels of translocators secretion, pore formation, and cell entry. Altogether, our results offer a better understanding of the role of IpaD in the control of Shigella virulence.  相似文献   

15.
Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle “tip complex” (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N‐terminal half of IpaB were most likely to result in a loss of steady‐state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild‐type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C‐terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post‐secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.  相似文献   

16.
Bacterium usually utilises type III secretion systems (T3SS) to deliver effectors directly into host cells with the aids of chaperones. Hence, it is very important to identify bacterial T3SS effectors and chaperones for better understanding of host–pathogen interactions. Edwardsiella piscicida is an invasive enteric bacterium, which infects a wide range of hosts from fish to human. Given E. piscicida encodes a functional T3SS to promote infection, very few T3SS effectors and chaperones have been identified in this bacterium so far. Here, we reported that EseK is a new T3SS effector protein translocated by E. piscicida. Bioinformatic analysis indicated that escH and escS encode two putative class I T3SS chaperones. Further investigation indicated that EscH and EscS can enhance the secretion and translocation of EseK. EscH directly binds EseK through undetermined binding domains, whereas EscS binds EseK via its N‐terminal α‐helix. We also found that EseK has an N‐terminal chaperone‐binding domain, which binds EscH and EscS to form a ternary complex. Zebrafish infection experiments showed that EseK and its chaperones EscH and EscS are necessary for bacterial colonisation in zebrafish. This work identified a new T3SS effector, EseK, and its two T3SS chaperones, EscH and EscS, in E. piscicida, which enriches our knowledge of bacterial T3SS effector–chaperone interaction and contributes to our understanding of bacterial pathogenesis.  相似文献   

17.
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath‐like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero‐aggregative Escherichia coli Sci‐1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self‐protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C‐terminal extension domain of VgrG1, including a transthyretin‐like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C‐terminus of VgrG proteins.  相似文献   

18.
Type III secretion enables bacteria to intoxicate eukaryotic cells with anti‐host effectors. A class of secreted cargo are the two hydrophobic translocators that form a translocon pore in the host cell plasma membrane through which the translocated effectors may gain cellular entry. In pathogenic Yersinia, YopB and YopD shape this translocon pore. Here, four in cis yopD mutations were constructed to disrupt a predicted α‐helix motif at the C‐terminus. Mutants YopDI262P and YopDK267P poorly localized Yop effectors into target eukaryotic cells and failed to resist uptake and killing by immune cells. These defects were due to deficiencies in host‐membrane insertion of the YopD–YopB translocon. Mutants YopDA263P and YopDA270P had no measurable in vitro translocation defect, even though they formed smaller translocon pores in erythrocyte membranes. Despite this, all four mutants were attenuated in a mouse infection model. Hence, YopD variants have been generated that can spawn translocons capable of targeting effectors in vitro, yet were bereft of any lethal effect in vivo. Therefore, Yop translocators may possess other in vivo functions that extend beyond being a portal for effector delivery into host cells.  相似文献   

19.
Seasonal effects of environmental variables on photosynthetic activity and secondary xylem formation provide data to demonstrate how environmental factors together with leaf ageing during the season control tree growth. In this study, we assessed physiological responses in photosynthetic behaviour to seasonal climate changes, and also identified seasonal differences in vascular traits within differentiating secondary xylem tissue from three diploid species of the taxonomically complex genus Sorbus. From sampling day 150, a clear physiological segregation of S. chamaemespilus from S. torminalis and S. aria was evident. The shrubby species S. chamaemespilus could be distinguished by a higher photosynthetic capacity between days 150 and 206. This was reflected in its associations with net CO2 assimilation rate (PN), maximum photochemical efficiency of PSII (Fv/Fm), variable‐to‐initial fluorescence ratio (Fv/F0), potential electron acceptor capacity (‘area’) in multivariate space, and also its associations with log‐transformed vessel area and log‐transformed relative conductivity between days 239 and 268. The maximum segregation and differentiation among the examined Sorbus species was on sampling day 206. The largest differences between S. torminalis and S. aria were found on day 115, when the latter species clearly showed closer associations with high values of vessel density and transpiration (E). Sampling day clusters were arranged along an arch‐like gradient that reflected the positioning of the entire growing season in multivariate space. This arch‐like pattern was most apparent in the case of S. chamaemespilus, but was also observed in S. torminalis and S. aria.  相似文献   

20.
Bacterial type III secretion system (T3SS) chaperones pilot substrates to the export apparatus in a secretion‐competent state, and are consequently central to the translocation of effectors into target cells. Chlamydia trachomatis is a genetically intractable obligate intracellular pathogen that utilizes T3SS effectors to trigger its entry into mammalian cells. The only well‐characterized T3SS effector is TARP (translocated actin recruitment protein), but its chaperone is unknown. Here we exploited a known structural signature to screen for putative type III secretion chaperones encoded within the C. trachomatis genome. Using bacterial two‐hybrid, co‐precipitation, cross‐linking and size exclusion chromatography we show that Slc1 (SycE‐like chaperone 1; CT043) specifically interacts with a 200‐amino‐acid residue N‐terminal region of TARP (TARP1–200). Slc1 formed homodimers in vitro, as shown in cross‐linking and gel filtration experiments. Biochemical analysis of an isolated Slc1–TARP1–200 complex was consistent with a characteristic 2:1 chaperone–effector stoichiometry. Furthermore, Slc1 was co‐immunoprecipitated with TARP from C. trachomatis elementary bodies. Also, coexpression of Slc1 specifically enhanced host cell translocation of TARP by a heterologous Yersinia enterocolitica T3SS. Taken together, we propose Slc1 as a chaperone of the C. trachomatis T3SS effector TARP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号