首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammation within the CNS is a major component of many neurodegenerative diseases. A characteristic feature is the generation of microglia‐derived factors that play an essential role in the immune response. IL‐1β is a pro‐inflammatory cytokine released by activated microglia, able to exacerbate injury at elevated levels. In the presence of caspase‐1, pro‐IL‐1β is cleaved to the mature cytokine following NOD‐like receptor pyrin domain containing 3 (NLRP3) inflammasome activation. Growing evidence suggests that ceramide plays a critical role in NLRP3 inflammasome assembly, however, the relationship between ceramide and inflammasome activation in microglia remains unknown. Here, we investigated potential mechanistic links between ceramide as a modulator of NLRP3 inflammasome assembly and the resulting secretion of IL‐1β using small bioactive enzyme stimulators and inhibitors of ceramide signaling in wild‐type and apoptosis‐associated speck‐like protein containing a CARD knockout (ASC?/?) primary microglia. To induce the expression of inflammasome components, microglia were primed prior to experiments. Treatment with sodium palmitate (PA) induced de novo ceramide synthesis via modulation of its synthesizing protein serine palmitoyl transferase resulting in increased IL‐1β secretion in microglia. Exposure of microglia to the serine palmitoyl transferase‐inhibitor l ‐cycloserine significantly prevented PA‐induced IL‐1β secretion. Application of the ceramide analogue C2 and the sphingosine‐1‐phosphate‐receptor agonist Fingolimod (FTY720) up‐regulated levels of IL‐1β and cleaved caspase‐1 in wild‐type microglia, whereas ASC?/? microglia were unaffected. HPA‐12 inhibition of ceramide transport did not affect inflammasome activation. Taken together, our findings reveal a critical role for ceramide as a positive modulator of NLRP3 inflammasome assembly and the resulting release of IL‐1β.

  相似文献   

2.
Interleukin‐1β (IL‐1β) is released from activated microglia and involved in the neurodegeneration of acute and chronic brain disorders, such as stroke and Alzheimer's disease, in which extracellular acidification has been shown to occur. Here, we examined the extracellular acidic pH regulation of IL‐1β production, especially focusing on TDAG8, a major proton‐sensing G‐protein‐coupled receptor, in mouse microglia. Extracellular acidification inhibited lipopolysaccharide ‐induced IL‐1β production, which was associated with the inhibition of IL‐1β cytoplasmic precursor and mRNA expression. The IL‐1β mRNA and protein responses were significantly, though not completely, attenuated in microglia derived from TDAG8‐deficient mice compared with those from wild‐type mice. The acidic pH also stimulated cellular cAMP accumulation, which was completely inhibited by TDAG8 deficiency. Forskolin and a cAMP derivative, which specifically stimulates protein kinase A (PKA), mimicked the proton actions, and PKA inhibitors reversed the acidic pH‐induced IL‐1β mRNA expression. The acidic pH‐induced inhibitory IL‐1β responses were accompanied by the inhibition of extracellular signal‐related kinase and c‐Jun N‐terminal kinase activities. The inhibitory enzyme activities in response to acidic pH were reversed by the PKA inhibitor and TDAG8 deficiency. We conclude that extracellular acidic pH inhibits lipopolysaccharide‐induced IL‐1β production, at least partly, through the TDAG8/cAMP/PKA pathway, by inhibiting extracellular signal‐related kinase and c‐Jun N‐terminal kinase activities, in mouse microglia.

  相似文献   


3.
Interleukin‐1β (IL‐1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL‐1β production in response to live S. aureus is mediated through the Nod‐like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain), and pro‐caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild‐type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL‐1β, other key inflammatory mediators, including IL‐6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL‐1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL‐1β release and survival during acute CNS S. aureus infection.

  相似文献   


4.
Parkinson's disease (PD) is a progressive neurodegenerative disorder, of which 1% of the hereditary cases are linked to mutations in DJ‐1, an oxidative stress sensor. The pathological hallmark of PD is intercellular inclusions termed Lewy Bodies, composed mainly of α‐Synuclein (α‐Syn) protein. Recent findings have shown that α‐Syn can be transmitted from cell to cell, suggesting an important role of microglia, as the main scavenger cells of the brain, in clearing α‐Syn. We previously reported that the knock down (KD) of DJ‐1 in microglia increased cells’ neurotoxicity to dopaminergic neurons. Here, we discovered that α‐Syn significantly induced elevated secretion of the proinflammatory cytokines IL‐6 and IL‐1β and a significant dose‐dependent elevation in the production of nitric oxide in DJ‐1 KD microglia, compared to control microglia. We further investigated the ability of DJ‐1 KD microglia to uptake and degrade soluble α‐Syn, and discovered that DJ‐1 KD reduces cell‐surface lipid raft expression in microglia and impairs their ability to uptake soluble α‐Syn. Autophagy is an important mechanism for degradation of intracellular proteins and organelles. We discovered that DJ‐1 KD microglia exhibit an impaired autophagy‐dependent degradation of p62 and LC3 proteins, and that manipulation of autophagy had less effect on α‐Syn uptake and clearance in DJ‐1 KD microglia, compared to control microglia. Further studies of the link between DJ‐1, α‐Syn uptake and autophagy may provide useful insights into the role of microglia in the etiology of the PD.

  相似文献   

5.
DJ‐1 is an oxidative stress sensor that localizes to the mitochondria when the cell is exposed to oxidative stress. DJ‐1 mutations that result in gene deficiency are linked to increased risk of Parkinson's disease (PD). Activation of microglial stress conditions that are linked to PD may result in neuronal death. We postulated that DJ‐1 deficiency may increase microglial neurotoxicity. We found that down‐regulation of DJ‐1 in microglia using an shRNA approach increased cell sensitivity to dopamine as measured by secreted pro‐inflammatory cytokines such as IL‐1β and IL‐6. Furthermore, we discovered that DJ‐1‐deficient microglia had increased monoamine oxidase activity that resulted in elevation of intracellular reactive oxygen species and nitric oxide leading to increased dopaminergic neurotoxicity. Rasagaline, a monoamine oxidase inhibitor approved for treatment of PD, reduced the microglial pro‐inflammatory phenotype and significantly reduced neurotoxicity. Moreover, we discovered that DJ‐1‐deficient microglia have reduced expression of triggering receptor expressed on myeloid cells 2 (TREM2), previously suggested as a risk factor for pro‐inflammation in neurodegenerative diseases. Further studies of DJ‐1‐mediated cellular pathways in microglia may contribute useful insights into the development of PD providing future avenues for therapeutic intervention.

  相似文献   


6.
Recent studies have shown that sigma‐1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3‐methyl‐6‐chloro‐7,8‐hydroxy‐1‐[3‐methylphenyl]‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine), an atypical dopamine receptor‐1 agonist, has been recently identified as a potent allosteric modulator of sigma‐1 receptor. Here, we investigated the anti‐inflammatory effects of SKF83959 in lipopolysaccharide (LPS)‐stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro‐inflammatory mediators, such as tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma‐1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma‐1 receptors, and enhanced the inhibitory effects of DHEA on LPS‐induced microglia activation in a synergic manner. Furthermore, in a microglia‐conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS‐activated microglia toward HT‐22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma‐1 receptors by SKF83959 inhibits microglia‐mediated inflammation.

  相似文献   


7.
Bone cancer pain (BCP) is one of the most common and severe complications in patients suffering from primary bone cancer or metastatic bone cancer such as breast, prostate, or lung, which profoundly compromises their quality of life. Emerging lines of evidence indicate that central sensitization is required for the development and maintenance of BCP. However, the underlying mechanisms are largely unknown. In this study, we investigated the role of PI3Kγ/Akt in the central sensitization in rats with tumor cell implantation in the tibia, a widely used model of BCP. Our results showed that PI3Kγ and its downstream target pAkt were up‐regulated in a time‐dependent manner and distributed predominately in the superficial layers of the spinal dorsal horn neurons, astrocytes and a minority of microglia, and were colocalized with non‐peptidergic, calcitonin gene‐related peptide‐peptidergic, and A‐type neurons in dorsal root ganglion ipsilateral to tumor cell inoculation in rats. Inhibition of spinal PI3Kγ suppressed BCP‐associated behaviors and the up‐regulation of pAkt in the spinal cord and dorsal root ganglion. This study suggests that PI3Kγ/Akt signal pathway mediates BCP in rats.

  相似文献   


8.
9.
It is well known that sleep disorders are harmful to people's health and performance, and growing evidence suggests that sleep deprivation (SD ) can trigger neuroinflammation in the brain. The nucleotide‐binding domain and leucine‐rich repeat protein‐3 (NLRP 3) inflammasome is reported to be relevant to the neuroinflammation induced by SD , but the regulatory signaling that governs the NLRP 3 inflammasome in SD is still unknown. Meanwhile, whether the regulatory action of antidepressants in astrocytes could affect the neuroinflammation induced by SD also remains obscure. In this study, we were the first to discover that the antidepressant fluoxetine, a type of specific serotonin reuptake inhibitor widely used in clinical practice, could suppress the neuroinflammation and neuronal apoptosis induced by SD . The main findings from this study are as follows: (i) SD stimulated the expression of activated NLRP 3 inflammasomes and the maturation of IL ‐1β/18 via suppressing the phosphorylation of STAT 3 in astrocytes; (ii) SD decreased the activation of AKT and stimulated the phosphorylation of GSK ‐3β, which inhibited the phosphorylation of STAT 3; (iii) the NLRP 3 inflammasome expression stimulated by SD was partly mediated by the P2X7 receptor; (iv) an agonist of STAT 3 could significantly abolish the expression of NLRP 3 inflammasomes induced by an agonist of the P2X7 receptor in primary cultured astrocytes; (v) the administration of fluoxetine could reverse the stimulation of NLRP 3 inflammasome expression and function by SD through elevating the activation of STAT 3. In conclusion, our present research suggests the promising possibility that fluoxetine could ameliorate the neuronal impairment induced by SD .

  相似文献   

10.
The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase‐3β (GSK‐3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid‐beta (Aβ)42‐induced neuronal toxicity model of Alzheimer's disease. In Aβ42‐induced toxic conditions, each PP2A and GSK‐3β activity measured at different times showed time‐dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre‐treatment showed dose‐dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK‐3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42‐induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK‐3β and nAChRs activity would partially contribute to its effects.

  相似文献   


11.
Chronically activated microglia contribute to the development of neurodegenerative diseases such as Alzheimer's disease (AD ) by the release of pro‐inflammatory mediators that compromise neuronal function and structure. Modulating microglia functions could be instrumental to interfere with disease pathogenesis. Previous studies have shown anti‐inflammatory effects of acetylcholine (AC h) or norepinephrine (NE ), which mainly activates the β‐receptors on microglial cells. Non‐invasive vagus nerve stimulation (nVNS ) is used in treatment of drug‐resistant depression, which is a risk factor for developing AD . The vagus nerve projects to the brainstem's locus coeruleus from which noradrenergic fibers reach to the Nucleus Basalis of Meynert (NBM ) and widely throughout the brain. Pilot studies showed first signs of cognitive‐enhancing effects of nVNS in AD patients. In this study, the effects of nVNS on mouse microglia cell morphology were analyzed over a period of 280 min by 2‐photon laser scanning in vivo microscopy. Total branch length, average branch order and number of branches, which are commonly used indicators for the microglial activation state were determined and compared between young and old wild‐type and amyloid precursor protein/presenilin‐1 (APP/PS1) transgenic mice. Overall, these experiments show strong morphological changes in microglia, from a neurodestructive to a neuroprotective phenotype, following a brief nVNS in aged animals, especially in APP/PS 1 animals, whereas microglia from young animals were morphologically unaffected.

  相似文献   

12.
Tuftsin (Thr‐Lys‐Pro‐Arg) is a natural immunomodulating peptide found to stimulate phagocytosis in macrophages/microglia. Tuftsin binds to the receptor neuropilin‐1 (Nrp1) on the surface of cells. Nrp1 is a single‐pass transmembrane protein, but its intracellular C‐terminal domain is too small to signal independently. Instead, it associates with a variety of coreceptors. Despite its long history, the pathway through which tuftsin signals has not been described. To investigate this question, we employed various inhibitors to Nrp1's coreceptors to determine which route is responsible for tuftsin signaling. We use the inhibitor EG00229, which prevents tuftsin binding to Nrp1 on the surface of microglia and reverses the anti‐inflammatory M2 shift induced by tuftsin. Furthermore, we demonstrate that blockade of transforming growth factor beta (TGFβ) signaling via TβR1 disrupts the M2 shift similar to EG00229. We report that tuftsin promotes Smad3 phosphorylation and reduces Akt phosphorylation. Taken together, our data show that tuftsin signals through Nrp1 and the canonical TGFβ signaling pathway.

  相似文献   


13.
Two types of syntaxin 1 isoforms, HPC‐1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are thought to have similar functions in exocytosis of synaptic vesicles. STX1A?/? mice which we generated previously develop normally, possibly because of compensation by STX1B. We produced STX1B?/? mice using targeted gene disruption and investigated their phenotypes. STX1B?/? mice were born alive, but died before postnatal day 14, unlike STX1A?/? mice. Morphologically, brain development in STX1B?/? mice was impaired. In hippocampal neuronal culture, the cell viability of STX1B?/? neurons was lower than that of WT or STX1A?/? neurons after 9 days. Interestingly, STX1B?/? neurons survived on WT or STX1A?/? glial feeder layers as well as WT neurons. However, STX1B?/? glial feeder layers were less effective at promoting survival of STX1B?/? neurons. Conditioned medium from WT or STX1A?/? glial cells had a similar effect on survival, but that from STX1B?/? did not promote survival. Furthermore, brain‐derived neurotrophic factor (BDNF) or neurotrophin‐3 supported survival of STX1B?/? neurons. BDNF localization in STX1B?/? glial cells was disrupted, and BDNF secretion from STX1B?/? glial cells was impaired. These results suggest that STX1A and STX1B may play distinct roles in supporting neuronal survival by glia.

  相似文献   


14.
15.
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3 that leads to vision loss, progressive cognitive and motor decline, and premature death. Morphological evidence of astrocyte activation occurs early in the disease process and coincides with regions where neuronal loss eventually ensues. However, the consequences of CLN3 mutation on astrocyte function remain relatively ill-defined. Astrocytes play a critical role in CNS homeostasis, in part, by their ability to regulate the extracellular milieu via the formation of extensive syncytial networks coupled by gap junction (GJ) channels. In contrast, unopposed hemichannels (HCs) have been implicated in CNS pathology by allowing the non-discriminant passage of molecules between the intracellular and extracellular milieus. Here we examined acute brain slices from CLN3 mutant mice (CLN3Δex7/8) to determine whether CLN3 loss alters the balance of GJ and HC activity. CLN3Δex7/8 mice displayed transient increases in astrocyte HC opening at postnatal day 30 in numerous brain regions, compared to wild type (WT) animals; however, HC activity steadily decreased at postnatal days 60 and 90 in CLN3Δex7/8 astrocytes to reach levels lower than WT cells. This suggested a progressive decline in astrocyte function, which was supported by significant reductions in glutamine synthetase, GLAST, and connexin expression in CLN3Δex7/8 mice compared to WT animals. Based on the early increase in astrocyte HC activity, CLN3Δex7/8 mice were treated with the novel carbenoxolone derivative INI-0602 to inhibit HCs. Administration of INI-0602 for a one month period significantly reduced lysosomal ceroid inclusions in the brains of CLN3Δex7/8 mice compared to WT animals, which coincided with significant increases in astrocyte GJ communication and normalization of astrocyte resting membrane potential to WT levels. Collectively, these findings suggest that alterations in astrocyte communication may impact the progression of JNCL and could offer a potential therapeutic target.  相似文献   

16.
17.
18.
Chronic glial activation and neuroinflammation induced by the amyloid‐β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD‐genetic risk factor; increasing risk up to 12‐fold compared to APOE3, with APOE4‐specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ‐induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell‐specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ‐independent neuroinflammation, data for APOE‐modulated Aβ‐induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ‐induced effects on inflammatory receptor signaling, including amplification of detrimental (toll‐like receptor 4‐p38α) and suppression of beneficial (IL‐4R‐nuclear receptor) pathways. To ultimately develop APOE genotype‐specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE‐modulated chronic neuroinflammation.

  相似文献   


19.
Alzheimer's disease (AD ) is a neurodegenerative pathology characterized by aggregates of amyloid‐β (Aβ) and phosphorylated tau protein, synaptic dysfunction, and spatial memory impairment. The Wnt signaling pathway has several key functions in the adult brain and has been associated with AD , mainly as a neuroprotective factor against Aβ toxicity and tau phosphorylation. However, dysfunction of Wnt/β‐catenin signaling might also play a role in the onset and development of the disease. J20 APP swInd transgenic (Tg) mouse model of AD was treated i.p. with various Wnt signaling inhibitors for 10 weeks during pre‐symptomatic stages. Then, cognitive, biochemical and histochemical analyses were performed. Wnt signaling inhibitors induced severe changes in the hippocampus, including alterations in Wnt pathway components and loss of Wnt signaling function, severe cognitive deficits, increased tau phosphorylation and Aβ1–42 peptide levels, decreased Aβ42/Aβ40 ratio and Aβ1–42 concentration in the cerebral spinal fluid, and high levels of soluble Aβ species and synaptotoxic oligomers in the hippocampus, together with changes in the amount and size of senile plaques. More important, we also observed severe alterations in treated wild‐type (WT ) mice, including behavioral impairment, tau phosphorylation, increased Aβ1–42 in the hippocampus, decreased Aβ1–42 in the cerebral spinal fluid, and hippocampal dysfunction. Wnt inhibition accelerated the development of the pathology in a Tg AD mouse model and contributed to the development of Alzheimer's‐like changes in WT mice. These results indicate that Wnt signaling plays important roles in the structure and function of the adult hippocampus and suggest that inhibition of the Wnt signaling pathway is an important factor in the pathogenesis of AD .

Read the Editorial Highlight for this article on page 356 .
  相似文献   

20.
Aging and the presence of cerebrovascular disease are associated with increased incidence of Alzheimer's disease. A common feature of aging and cerebrovascular disease is decreased endothelial nitric oxide (NO). We studied the effect of a loss of endothelium derived NO on amyloid precursor protein (APP) related phenotype in late middle aged (LMA) (14–15 month) endothelial nitric oxide synthase deficient (eNOS?/?) mice. APP, β‐site APP cleaving enzyme (BACE) 1, and amyloid beta (Aβ) levels were significantly higher in the brains of LMA eNOS?/? mice as compared with LMA wild‐type controls. APP and Aβ1‐40 were increased in hippocampal tissue of eNOS?/? mice as compared with wild‐type mice. LMA eNOS?/? mice displayed an increased inflammatory phenotype as compared with LMA wild‐type mice. Importantly, LMA eNOS?/? mice performed worse in a radial arm maze test of spatial learning and memory as compared with LMA wild‐type mice. These data suggest that chronic loss of endothelial NO may be an important contributor to both Aβ related pathology and cognitive decline.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号