首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on broad, nearly rangewide sampling, we reanalysed the phylogeography of the Lacerta viridis complex using the mitochondrial cytochrome b gene and the intron 7 of the nuclear β‐fibrinogen gene. Using the mitochondrial marker, we identified in phylogenetic analyses 10 terminal clades clustering in four deeply divergent main lineages whose relationships are weakly resolved. These lineages correspond to Lacerta bilineata, L. viridis, the previously identified Adriatic or West Balkan lineage and a newly discovered fourth lineage from the Anatolian Black Sea coast and the south‐eastern Balkan Peninsula. Except for the latter lineage, there is considerable phylogeographic structuring in each lineage, with higher diversity in the south of the distribution ranges. This pattern indicates the existence of two distinct microrefugia in the Italian Peninsula and Sicily and of up to seven microrefugia in the Balkan Peninsula, but of only one refugium along the Black Sea coast of Anatolia. We identified secondary contact zones of the main lineages and of terminal clades within these lineages. However, most of the formerly described putative contact zone of L. bilineata and L. viridis turned out to be a contact zone between the Adriatic lineage and L. viridis, but L. bilineata seems to be involved only marginally. Our nuclear marker could not unambiguously resolve whether there is gene flow in contact zones. Thus, further research is necessary to decide whether the four main lineages are conspecific or whether they represent distinct biological species. We restrict the name L. v. meridionalis to the newly identified genetic lineage from Turkey and south‐eastern Europe, synonymize some previously recognized taxa and suggest a tentative nomenclature for the L. viridis complex.  相似文献   

2.
The family Lacertidae encompasses more than 250 species distributed in the Palearctis, Ethiopis and Orientalis. Lacertids have been subjected in the past to several morphological and molecular studies to establish their phylogeny. However, the problems of convergent adaptation in morphology and of excessively variable molecular markers have hampered the establishment of well supported deeper phylogenetic relationships. Particularly the adaptations to xeric environments have often been used to establish a scenario for the origin and radiation of major lineages within lacertids. Here we present a molecular phylogenetic study based on two nuclear marker genes and representatives of 37 lacertid genera and distinct species groups (as in the case of the collective genus Lacerta). Roughly 1600 bp of the nuclear rag1 and c-mos genes were sequenced and analyzed. While the results provide good support to the hitherto suggested main subfamilies of Gallotiinae (Gallotia and Psammodromus), Eremiainae and Lacertinae [Harris, D.J., Arnold, E.N., Thomas, R.H., 1998. Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. Lond. B 265, 1939-1948], they also suggest unexpected relationships. In particular, the oriental genus Takydromus, previously considered the sister-group to the three subfamilies, is nested within Lacertinae. Moreover, the genera within the Eremiainae are further divided into two groups, roughly corresponding to their respective geographical distributions in the Ethiopian and the Saharo-Eurasian ranges. The results support an independent origin of adaptations to xeric conditions in different subfamilies. The relationships within the subfamily Lacertinae could not be resolved with the markers used. The species groups of the collective genus Lacerta show a bush-like topology in the inferred Bayesian tree, suggesting rapid radiation. The composition of the subfamilies Eremiainae and Lacertinae as well as their phylogeography are discussed.  相似文献   

3.
The Central Asian racerunner, Eremias velox, is a widely distributed lizard of the Eurasian lacertid genus Eremias. Nucleotide sequences of mitochondrial genes, cyt b and 12S rDNA from 13 geographically distant localities in Iran and Central Asia, were analysed. Phylogenetic analyses of the sequence data unambiguously recovered five major clades within the E. velox complex with a high level of genetic divergence, indicating long periods of isolation. The basal position of the Iranian clades in the phylogenetic trees suggests that the E. velox clade originated on the Iranian plateau in the Middle Miocene. According to our calibrations, the northern Iranian clade diverged first some 10–11 Ma and that the Central Asian lineages split from the northeastern Iranian lineage approximately 6 Ma, most likely as a result of uplifting of the Kopet‐Dagh Mountains in the northern margin of the Iranian plateau. Topology of the phylogenetic trees, combined with the degree of the genetic distances among the independent lineages recovered in this study, provide a solid foundation for a fundamental revision of the taxonomic status of the major clades within this species complex.  相似文献   

4.
A maximum parsimony phylogeny of 14 Caucasian species of rock lizards, genus Ijicerta , subgenus Archaeolacerta , was constructed from mitochondrial cytochrome b and ATPase 6 partial gene sequences. Congruence analyses were carried out between the two genes. A synthesis of the data sets reveals three well supported monophyletic groups: (1) the caucasica group including ( Lacerta derjugini (( Lalpina, L. clarkorum ) ( L. caucasica, L. daghestanica ))); (2) the rudis group including ( L. parvula ( L. portschinskii ( L. vakntini, L. rudis ))); and (3) the saxicola group including ( L. mixta ( L. nairensis ( L. saxicola, L. raddeijj ). Despite the diagnosis of three groups, the placement of L. praticola as a basal taxon is uncertain, as are the relationships among the three groups. The mitochondrial DNA sequence data suggested prior hybridization between L. mixta and L. alpina and possibly between L. saxicola and L. nairensis. Lacerta raddei was resolved as a paraphyletic species on the mtDNA tree; this may result from either hybridization or random gene sorting.  相似文献   

5.
The phylogenetic relationships among genera of the subfamily Ariantinae (Pulmonata, Helicidae), especially the sister‐group relationship of Cylindrus obtusus, were investigated with three mitochondrial (12S rRNA, 16S rRNA, Cytochrome c oxidase subunit I) and two nuclear marker genes (Histone H4 and H3). Within Ariantinae, C. obtusus stands out because of its aberrant cylindrical shell shape. Here, we present phylogenetic trees based on these five marker sequences and discuss the position of C. obtusus and phylogeographical scenarios in comparison with previously published results. Our results provide strong support for the sister‐group relationship between Cylindrus and Arianta confirming previous studies and imply that the split between the two genera is quite old. The tree reveals a phylogeographical pattern of Ariantinae with a well‐supported clade comprising the Balkan taxa which is the sister group to a clade with individuals from Alpine localities. Additional lineages representing samples from southern Alpine localities as well as from Slovakia split from more basal nodes, but their relationships are not clearly resolved. To achieve more definitive conclusions concerning the geographical origin of Ariantinae, still more sequence data are needed to obtain a tree with better resolution of basal nodes. The genetic data also provided new insights concerning the genus Cepaea, which was used as one of the outgroup taxa. Cepaea vindobonensis is only distantly related to Cepaea nemoralis and Cepaea hortensis, the latter two being more closely related to Eobania vermiculata. Thus, in our tree, the genus Cepaea is paraphyletic.  相似文献   

6.
Rubia L. is the type genus of the coffee family Rubiaceae and the third largest genus in the tribe Rubieae, comprising ca. 80 species restricted to the Old World. China is an important diversity center for Rubia, where approximately half of its species occur. However, its internal phylogenetic relationships are still poorly understood. The objective of the present study is to contribute to the phylogenetic relationships within Rubia, using the nuclear internal transcribed spacer and six plastid markers and focusing on species from China. Twenty-seven species of Rubia were sampled to infer their phylogeny using Maximum parsimony, Maximum likelihood, and Bayesian analyses. The monophyly of Rubia is supported, provided that R. rezniczenkoana Litv. is excluded from Rubia and transferred to Galium as a new combination: G. rezniczenkoanum (Litv.) L. E Yang & Z. L. Nie. Within Rubia, two clades are clearly supported. They correspond to the traditional sect. Rubias.l. (A) and sect. Oligoneura Pojark. (B), and are morphologically mainly separable by their pinnate (A) versus palmate (B) leaf venation. Plesiomorphic features are the pinnate leaf veining in sect. Rubia s.l. and the occurrence of some species with opposite leaves and true stipules in sect. Oligoneura. In sect. Oligoneura one can assume an evolution from species with opposite leaves and true stipules (as in the R. siamensis Craib group) to those with whorls of two leaves and two leaf-like stipules (as in ser. Chinenses and the R. mandersii Collett & Hemsl. group) and finally with whorls of 6 or even more elements (as in ser. Cordifoliae). The correlation between clades recognized by DNA analyses and available differential morphological features is partly only loose, particularly in the group of R. cordifolia with 2×, 4×, and 6× cytotypes. This may be due to rapid evolutionary divergence and/or hybridization and allopolyploidy.  相似文献   

7.
The phylogeny of representative species of Chinese ranids was reconstructed using two nuclear (tyrosinase and rhodopsin) and two mitochondrial (12S rRNA, 16S rRNA) DNA fragments. Maximum parsimony, Bayesian, and maximum likelihood analyses were employed. In comparison with the results from nuclear and mitochondrial data, we used nuclear gene data as our preferred phylogenetic hypothesis. We proposed two families (Ranidae, Dicroglossidae) for Chinese ranids, with the exception of genus Ingerana. Within Dicroglossidae, four tribes were supported including Dicroglossini, Paini, Limnonectini, and Occidozygini. A broader sampling strategy and evidence from additional molecular markers are required to decisively evaluate the evolutionary history of Chinese ranids.  相似文献   

8.
The Malagasy carnivorans (Eupleridae) comprise seven genera and up to ten species, depending on the authority, and, within the past decades, two new taxa have been described. The family is divided into two subfamilies, the Galidiinae, mongoose‐like animals, and the Euplerinae, with diverse body forms. To verify the taxonomic status of Galidiinae species, including recently described taxa, as well as some recognized subspecies, we studied intrageneric genetic variation and structure, using both mitochondrial and nuclear markers. Our results suggest the recognition of four species in the Galidiinae, rendering each genus monospecific. We propose to recognize three subspecies in Galidia elegans (G. e. dambrensis, G. e. elegans, and G. e. occidentalis), two subspecies in Mungotictis decemlineata (M. d. decemlineata and M. d. lineata), and two subspecies in Galidictis fasciata (G. f. fasciata and G. f. grandidieri, the latter was recently described as a distinct species). Our results indicate also that Salanoia durrelli should be treated as a junior synonym of Salanoia concolor. Low levels of intraspecific divergence revealed some geographical structure for the Galidiinae taxa, suggesting that environmental barriers have isolated certain populations in recent geological time. All taxa, whether at the species or subspecies level, need urgent conservation attention, particularly those with limited geographical distributions, as all are threatened by forest habitat degradation.  相似文献   

9.
10.
With about 60,000 described species, Curculionoidea represent the most species-rich superfamily in the animal kingdom. The immense diversity apparently creates difficulties in the reconstruction of the phylogenetic relationships. Independent morphological studies have led to very different classifications. This study is based on molecular data from two independent molecular sources, the 16S and 18S rDNA. Sensitivity analyses were conducted for the sequence alignment (gap costs were varied) as well as the phylogenetic reconstruction algorithms and some of their parameters. The higher-level relationships reconstructed within Curculionoidea are sensitive to alignment and reconstruction method. Nemonychidae or Oxycorynidae+Belidae were found to be sister to all remaining Curculionoidea in many analyses. The 16S rDNA sequence data (obtained from 157 species) corroborate many tribes and genera as monophyletic. It is observed that the phylogenetic reconstruction of genera with specific genetic features such as polyploidy and parthenogenetic reproduction is difficult in weevils. The curculionid subfamily Lixinae appears monophyletic. A new monophylum consisting of Entiminae, Hyperinae, Cyclominae, Myllorhinus plus possibly the Cossoninae is distinguished and we call it Entiminae s.l. For most other subfamilies and families homoplasy concealed the phylogenetic signal (due to saturation of the 16S sequences), or the species sampling was insufficient, although our sampling scheme was rather broad. We observed that although data from one source can easily be misleading (16S) or hardly informative (18S), the combination of the two independent data sets can result in useful information for such a speciose group of organisms. Our study represents the most thorough analysis of molecular sequence data of the Curculionoidea to date and although the phylogenetic results appear less stable than expected, they reflect the information content of these sequence data realistically and thus contribute to the total knowledge about the phylogeny of the Curculionoidea.  相似文献   

11.
Mitochondrial cytochrome oxidase II (COII) gene sequences (549 base pairs) were used to investigate the taxonomic relationships among 12 marmoset (Callithrix, Cebuella and Mico) taxa. A large number of substitutions were found in the third base codon positions, providing a strong phylogenetic signal in a gene coding a conserved protein. Despite the significant affinity between the 2 Amazonian genera Cebuella and Mico, found in recent molecular studies, the analysis presented here did not resolve convincingly the phylogenetic relationships between the 3 genera. Mico nevertheless formed 3 distinct clades, reflecting a basic division of species groups based on geographic distribution (east or west of the Rio Tapajós) rather than morphology (presence or absence of auricular hair). This supports the taxonomic distinction of the allopatric emiliae forms. In Callithrix, Callithrix aurita forms a distinct clade, but the remaining morphotypes form a somewhat contradictory cluster, possibly resulting from an extremely rapid radiation.  相似文献   

12.
Evolutionary analysis of Prodiamesinae has long been impeded by lack of information, and its phylogenetic relationship with Orthocladiinae remains questionable. Here, ten complete mitochondrial genomes (mitogenomes) of Orthocladiinae sensu lato were newly sequenced, including three Prodiamesinae species and seven Orthocladiinae species. Coupled with published mitogenomes, a total of 12 mitogenomes of Orthocladiinae sensu lato were selected for a comparative mitogenomic analysis and phylogenetic reconstruction. Mitogenomes of Orthocladiinae sensu lato are conserved in structure, and all genes arrange the same gene order as the ancestral insect mitogenome. Nucleotide composition is highly biased, and the control region displayed the highest A + T content. All protein-coding genes are under purifying selection, and the ATP8 evolves at the fastest rate. In addition, the mitogenomes of Orthocladiinae sensu lato are highly conserved, and they are practically useful for phylogenetic inference, suggesting a re-classification of Orthocladiinae by sinking Prodiamesinae as a subgroup of Orthocladiinae.  相似文献   

13.
Phylogenetic relationships, taxonomy and nomenclature issues within East Asian voles Alexandromys were addressed using comprehensive species samples, including all 12 valid species of the genus, and multilocus analysis. We examined the mitochondrial cytochrome b (cytb) gene and three nuclear genes in 36 specimens. Additionally, we examined a data set of 106 specimens using only the cytb gene. Our results did not confirm the aggregation of A. kikuchii, A. montebelli and A. oeconomus into a separate clade, namely the subgenus Pallasiinus. Analysis of incomplete lineage sorting using JML software highlighted both the cases of mitochondrial introgression and incomplete lineage sorting within the genus. Thus, the sister position of A. sachalinensis and A. maximowiczii in mitochondrial trees could be explained by mitochondrial introgression, while the sister position of A. limnophilus and A. fortis in mitochondrial trees could be successfully explained by incomplete lineage sorting. Very short genetic distances, together with an absence of monophyly, of the three species, A. evoronensis, A. mujanensis and A. maximowiczii, is supported by multiple morphological data, which indicates that these three taxa should be one species—A. maximowiczii. Analysis of genetic distances and tree topology revealed that three species of short‐tailed voles—A. middendorffii, A. mongolicus and A. gromovi—are more closely related to each other than to other established species of Alexandromys. The lacustrine vole, A. limnophilus, is closely related to the group of short‐tailed voles. Analysis of the type specimens of limnophilus and flaviventris confirmed that these taxa form one species together with A. l. malygini. Our results suggest that the mountains of western Mongolia are inhabited by a new taxon of short‐tailed voles of the same rank as middendorffii, mongolicus and gromoviA. malpinus ssp. n.  相似文献   

14.
Aim To better understand the historical biogeography of the true seals, Phocidae, by combining nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in a divergence time analysis using multiple fossil calibrations. Location Arctic, Antarctic, Pacific and Atlantic Oceans, Lake Baikal, Caspian Sea. Methods Fifteen nuclear genes totalling 8935 bp plus near‐complete mitochondrial genome sequences were used in a Bayesian divergence time analysis, incorporating eight soft‐bound fossil calibrations across the phylogeny. All species of true seals were included, plus the walrus, three otariids and seven carnivore outgroups. The majority of the nuclear sequences and four phocid mitochondrial genomes (plus three non‐phocid mitochondrial genomes) were newly generated for this study using DNA extracted from tissue samples; other sequences were obtained from GenBank. Results Using multiple nuclear genes and multiple fossil calibrations resulted in most divergence time estimations within Phocidae being much more recent than predicted by other molecular studies incorporating only mtDNA and using a single calibration point. A new phylogenetic hypothesis was recovered for the Antarctic seals. Main conclusions Incorporating multiple nuclear genes and fossil calibrations had a profound effect on the estimated divergence times. Most estimated divergences within Phocinae (Arctic seals) correspond to Arctic oceanic events and all occur within the last 12 Myr, a time when the Arctic and Atlantic oceans were freely exchanging and perennial Arctic sea ice existed, indicating that the Arctic seals may have had a longer association with ice than previously thought. The Monachinae (‘southern’ seals) split from the Phocinae c. 15 Ma on the eastern US coast. Several early trans‐Atlantic dispersals possibly occurred, leaving no living descendants, as divergence estimates suggest that the Monachus (monk seal) species divergences occurred in the western Atlantic c. 6 Ma, with the Mediterranean monk seal ancestor dispersing afterwards. The tribes Lobodontini (Antarctic seals) and Miroungini (elephant seals) are also estimated to have diverged in the eastern Atlantic c. 7 Ma and a single Lobodontini dispersal to Antarctica occurred shortly afterwards. Many of the newly estimated dates are used to infer how extinct lineages/taxa are allied with their living relatives.  相似文献   

15.
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus.  相似文献   

16.
Microgastropods in the subclass Caenogastropoda are diverse and species‐rich and often exhibit similar morphologies across families, posing difficulties for species identification. Spirostyliferina Bandel, 2006 is a microgastropod genus that has been placed in the family Litiopidae associated with algae and seagrass across the tropical Indo‐Pacific and with only one known member to date (Spirostyliferina lizardensis Bandel, 2006). There are uncertainties surrounding the familial assignment of Spirostyliferina however, due to its unique shell with spiral zigzag ridges, unique pitted protoconch and a lack of molecular data for phylogenetic analysis. This study aims to resolve the position of Spirostyliferina within the Caenogastropoda by employing a multilocus data set for phylogenetic reconstruction, and scanning electron microscopy and micro‐computed tomography for morphological analysis. Maximum likelihood and Bayesian phylogenies of 56 species, 30 families and six superfamilies of Caenogastropoda recovered Spirostyliferina within the Truncatelloidea. Spirostyliferina had no affinity with any existing truncatelloidean families, and therefore, the family Spirostyliferinidae fam. nov. is proposed for this genus. The genus Hoenselaaria Moolenbeek, 2009 was synonymized with Spirostyliferina in this study (monotypic Hoenselaaria wareni Moolenbeek, 2009). Spirostyliferinidae is diagnosed by heavy pitted microsculpture on protoconch I and intermittent spiral zigzag ridges on the teleoconch. The unpegged corneous operculum and taenioglossate radula of Spirostyliferina appear similar to other truncatelloideans, confirming the position of Spirostyliferina as a monotypic clade within the Truncatelloidea. In all, this study advances the taxonomic status of a microgastropod with a minute size and rarity that presents significant challenges to its collection and study.  相似文献   

17.
Based on morphological data and analysis of mitochondrial cytochrome b gene and nuclear (S7 intron 1) DNA sequences, the phylogenetic relationships of all Pollimyrus species known from the Omo‐Turkana enclosed basin and Nile system below the Murchison Falls were solved. A mormyrid “Pollimyruspetherici is distantly related to all other studied Pollimyrus species and clusters together with Cyphomyrus species forming with the later a monophyletic group. Moreover, the West African (but not the Congo River) populations of Cyphomyrus psittacus, the type species of the genus, seem to be conspecific to C. petherici. That is, the range of the genus Cyphomyrus is extended toward the Nile and Omo‐Turkana basins. This genus belongs to the large clade widely distributed in sub‐Saharian Africa and characterized by the presence of a chin appendage. Significance of this character for mormyrid phylogeny is discussed. Two distinct lineages of Pollimyrus occurring sympatrically in the White Nile tributaries and previously reported as the light and dark forms of Pollimyrus isidori together with five other congeneric species studied form a monophyletic group. The light form apparently represents P. isidori distributed in the Nile system downstream of the Murchison Falls and West Africa; the dark‐colored form (designated as Pollimyrus “D”) represents a distinct phylogenetic lineage inhabiting both the Omo‐Turkana and the White Nile basin. Morphological and ecological data suggest that this form may be conspecific to East African Pollimyrus nigricans or most probably represents a new species.  相似文献   

18.
19.
Although the avian family Anhingidae is unequivocally monophyletic, the number and relationships of the component species within the single genus (Anhinga) have long remained unclear. Here, we use extensive mitochondrial and nuclear DNA sequence data (8,878 bp) to show that four species should be recognized. Our fully resolved and well‐supported tree shows that the American Anhinga (Anhinga anhinga) is sister to the three Old World species, with the Oriental (A. melanogaster) and African (A. rufa) Darters sister within the Old World clade, which also includes the Australian Darter (A. novaehollandiae). We estimate that the divergence between the New World and Old World branches occurred 19–22 mya, with the Australian Darter separating from its Old World congeners 14–16 mya and the Oriental and African species splitting ~10 mya. The genus is yet another example of osteological conservatism in the Suliformes, which is comparable to that shown by the cormorants and shags. Nevertheless, the relationships we infer are congruent with recent plumage studies and are biogeographically plausible. We suggest that further investigation of the variation within the African and Australian Darters would be of interest.  相似文献   

20.
Complete mitochondrial (mt) genomes were sequenced from representatives of three lacertid lizards: Podarcis siculus, Podarcis muralis and Phoenicolacerta kulzeri. In all three genomes the arrangement of the 22 tRNAs, the two rRNAs and the 13 protein‐coding genes conforms to the common vertebrate arrangement. The phylogenetic position of Lacertidae within the order Squamata was determined through sequence analyses based on large sections of complete mt genomes. The number of nucleotide sites used for tree construction was 9234 when outgroup taxa were included, and 10 499 when only Squamata were compared. The phylogenetic analyses confirmed the sister group relationship between Lacertidae and Amphisbaenia as previously proposed on the basis of molecular data. Additionally, Bayesian analysis revealed a well supported clade comprising (Gekkonidae (Lacertidae + Amphisbaenia)), which is not in accordance with the traditional morphological view and most of the previous molecular studies. It confirms, however, the close relationship between Gekkonidae and Amphisbaenia as revealed in a recent study based on complete mt genomes from a smaller number of taxa. Intra‐ and intergeneric sequence comparisons of six commonly used marker genes showed rather high levels of divergence within the Lacertidae. In the intrageneric comparison the control region proved to be considerably more conserved than the protein coding genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号