首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hormonal Interactions and Stomatal Responses   总被引:18,自引:4,他引:14  
Both environmental and hormonal factors and their interactions affect stomatal behavior. Methodologies for identifying hormonal interactions affecting stomatal function are reviewed. Although there is abundant evidence that abscisic acid (ABA) closes stomata, evidence that the other classical plant hormones (auxins, cytokinins, ethylene, gibberellins) in isolation alter stomatal response often comes from exogenous applications to detached epidermes and leaves, rather than correlation of endogenous concentrations with stomatal conductance (gs). Evidence for hormonal interactions comes from isolated tissues with exogenous hormones supplied at nonphysiological concentrations, or from variation in stomatal response to xylem ABA concentration in planta. The roles of hormonal changes in causing stomatal closure following changes in soil environment are considered. Although soil drying induces multiple changes in xylem sap composition, analysis of stomatal responses suggests a dominant role for increased endogenous ABA concentrations and relatively little evidence of roles for other hormones. A similar picture emerges from studies of soil compaction. Although soil flooding decreases ABA export from the root system, there is some evidence that apoplastic ABA accumulation elicits stomatal closure. Stomatal closure following nitrogen deprivation does not appear to involve ABA and may provide a suitable experimental system to investigate roles for other hormones. The availability of mutant or transgenic lines with altered hormone homeostasis or sensitivity provides opportunities to screen for altered stomatal behavior in response to different environments, and may provide new evidence that hormonal interactions are important in the control of stomatal behavior.  相似文献   

2.
Elevated atmospheric ozone concentrations (70 ppb) reduced the sensitivity of stomatal closure to abscisic acid (ABA) in Leontodon hispidus after at least 24 h exposure (1) when detached leaves were fed ABA, and (2) when intact plants were sprayed or injected with ABA. They also reduced the sensitivity of stomatal closure to soil drying around the roots. Such effects could already be occurring under current northern hemisphere peak ambient ozone concentrations. Leaves detached from plants which had been exposed to elevated ozone concentrations generated higher concentrations of ethylene, although leaf tissue ABA concentrations were unaffected. When intact plants were pretreated with the ethylene receptor binding antagonist 1-methylcyclopropene, the stomatal response to both applied ABA and soil drying was fully restored in the presence of elevated ozone. Implications of ethylene's antagonism of the stomatal response to ABA under oxidative stress are discussed. We suggest that this may be one mechanism whereby elevated ozone induces visible injury in sensitive species. We emphasize that drought linked to climate change and tropospheric ozone pollution, are both escalating problems. Ozone will exacerbate the deleterious effects of drought on the many plant species including valuable crops that respond to this pollutant by emitting more ethylene.  相似文献   

3.
To examine the cross talk between the abscisic acid (ABA) and ethylene signal transduction pathways, signaling events during ABA-induced stomatal closure were examined in Arabidopsis (Arabidopsis thaliana) wild-type plants, in an ethylene-overproducing mutant (eto1-1), and in two ethylene-insensitive mutants (etr1-1 and ein3-1). Using isolated epidermal peels, stomata of wild-type plants were found to close within a few minutes in response to ABA, whereas stomata of the eto1-1 mutant showed a similar but less sensitive ABA response. In addition, ABA-induced stomatal closure could be inhibited by application of ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, stomata of the etr1-1 and ein3-1 mutants were able to close in response to concomitant ABA and ACC application, although to a lesser extent than in wild-type plants. Moreover, expression of the ABA-induced gene RAB18 was reduced following ACC application. These results indicate that ethylene delays stomatal closure by inhibiting the ABA signaling pathway. The same inhibitive effects of ethylene on stomatal closure were observed in ABA-irrigated plants and the plants in drought condition. Furthermore, upon drought stress, the rate of transpiration was greater in eto1-1 and wild-type plants exposed to ethylene than in untreated wild-type control plants, indicating that the inhibitive effects of ethylene on ABA-induced stomatal closure were also observed in planta.  相似文献   

4.
Plants produced at high relative air humidity (RH) show poor control of water loss after transferring to low RH, a phenomenon which is thought to be due to their stomatal behaviour. The stomatal anatomy and responses of moderate (55%) and high (90%) RH grown Tradescantia virginiana plants to treatments that normally induce stomatal closure, i.e. desiccation, abscisic acid (ABA) application and exposure to darkness were studied using attached or detached young, fully expanded leaves. Compared with plants grown at moderate RH the transpiration rate, stomatal conductance and aperture of high RH grown plants measured at the same condition (40% RH) were, respectively, 112, 139 and 132% in light and 141, 188 and 370% in darkness. Besides the differences in stomatal size (guard cell length was 56.7 and 73.3 µm for moderate and high RH grown plants, respectively), there was a clear difference in stomatal behaviour. The stomata responded to desiccation, ABA and darkness in both moderate and high RH grown plants, but the high variability of stomatal closure in high RH grown plants was striking. Some stomata developed at high RH closed in response to darkness or to a decrease in relative water content to the same extent as did stomata from moderate RH grown plants, whereas others closed only partly or did not close at all. Evidently, some as yet unidentified physiological or anatomical changes during development disrupt the normal functioning of some stomata in leaves grown at high RH. The failure of some stomata to close fully in response to ABA suggests that ABA deficiency was not responsible for the lack of stomatal closure in response to desiccation.  相似文献   

5.
CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss‐of‐function mutants were sensitivity to drought stress. CLE9‐induced stomatal closure was impaired in abscisic acid (ABA)‐deficient mutants, indicating that ABA is required for CLE9‐medaited guard cell signalling. We further deciphered that two guard cell ABA‐signalling components, OST1 and SLAC1, were responsible for CLE9‐induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase‐deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA‐dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.  相似文献   

6.
以葱莲(Zephyranthes candida)为材料,研究不同浓度外源脱落酸、硝普钠(sodium nitroprusside,SNP)及过氧化氢对花瓣和叶片表皮气孔开闭的影响,以期为三者在切花保鲜中的应用提供新的依据。实验结果表明,10~1000 μmol/L脱落酸和硝普钠均能不同程度地引起花瓣和叶片表皮气孔关闭,且花瓣气孔较叶片气孔有更高的敏感性。过氧化氢对叶片表皮气孔开闭的影响大于对花瓣气孔的影响,花瓣表皮的气孔孔径仅在1000 μmol/L处理时变化显著。这说明在外源信号物质延缓切花衰老的过程中,花瓣表皮气孔的运动也可能起到了一定的作用。适当外源信号物质处理能诱导花瓣表皮气孔关闭,从而使花瓣的蒸腾作用减小,维持植物体内水势,延缓切花衰老。  相似文献   

7.
以葱莲(Zephyranthes candida)为材料,研究不同浓度外源脱落酸、硝普钠(sodium nitroprusside,SNP)及过氧化氢对花瓣和叶片表皮气孔开闭的影响,以期为三者在切花保鲜中的应用提供新的依据。实验结果表明,10~1000μmol/L脱落酸和硝普钠均能不同程度地引起花瓣和叶片表皮气孔关闭,且花瓣气孔较叶片气孔有更高的敏感性。过氧化氢对叶片表皮气孔开闭的影响大于对花瓣气孔的影响,花瓣表皮的气孔孔径仅在1000μmol/L处理时变化显著。这说明在外源信号物质延缓切花衰老的过程中,花瓣表皮气孔的运动也可能起到了一定的作用。适当外源信号物质处理能诱导花瓣表皮气孔关闭,从而使花瓣的蒸腾作用减小,维持植物体内水势,延缓切花衰老。  相似文献   

8.
The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 mnoL/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split-root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole-root-drying treatment than those in the semi-root- drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic.  相似文献   

9.
研究了周期性土壤干旱期间气孔对木质部ABA响应的灵敏度的变化以及叶片水势对灵敏度的影响。实验结果证明了木质部ABA浓度是反映根系周围土壤水分状况的一个指标的结论。土壤周期性干旱不影响木质部ABA浓度对土壤水分状况的依赖关系,但显著地提高了气孔对木质部ABA 响应的灵敏度。根据对实测数据的数学模拟结果显示,引起气孔导度下降50% 所需的木质部ABA浓度从第一轮土壤干旱的750 nmol/L降至第二轮土壤干旱的550 nmol/L。分根实验的结果表明,叶片水分亏缺显著提高了气孔对木质部ABA 的响应的灵敏程度,全根干旱中引起气孔导度下降50 % 所需的木质部ABA 浓度比半根干旱的小2 ~4 倍。这表明,气孔对木质部ABA响应的灵敏度不是一个固定的特性,可随植物生长环境及许多其他因素的变化而表现出很大的差异  相似文献   

10.
Brassinosteroids (BRs) are essential for plant growth and development; however, their roles in the regulation of stomatal opening or closure remain obscure. Here, the mechanism underlying BR‐induced stomatal movements is studied. The effects of 24‐epibrassinolide (EBR) on the stomatal apertures of tomato (Solanum lycopersicum) were measured by light microscopy using epidermal strips of wild type (WT), the abscisic acid (ABA)‐deficient notabilis (not) mutant, and plants silenced for SlBRI1, SlRBOH1 and SlGSH1. EBR induced stomatal opening within an appropriate range of concentrations, whereas high concentrations of EBR induced stomatal closure. EBR‐induced stomatal movements were closely related to dynamic changes in H2O2 and redox status in guard cells. The stomata of SlRBOH1‐silenced plants showed a significant loss of sensitivity to EBR. However, ABA deficiency abolished EBR‐induced stomatal closure but did not affect EBR‐induced stomatal opening. Silencing of SlGSH1, the critical gene involved in glutathione biosynthesis, disrupted glutathione redox homeostasis and abolished EBR‐induced stomatal opening. The results suggest that transient H2O2 production is essential for poising the cellular redox status of glutathione, which plays an important role in BR‐induced stomatal opening. However, a prolonged increase in H2O2 facilitated ABA signalling and stomatal closure.  相似文献   

11.
Chlorophyll fluorescence imaging was used to measure stomatalclosure in response to desiccation of Tradescantia virginianaleaves grown under high (90%) and moderate (55%) relative humidities(RHs), or transferred between these humidities. Stomata in leavesgrown at high RH were less responsive to desiccation than thoseof leaves grown at moderate RH. Stomata of plants transferredfrom moderate RH conditions to high RH showed the same diminishedclosure in response to desiccation as did stomata that developedat high RH. This response was found both when the leaves werefully expanded and when still actively expanding during themoderate RH pre-treatment. Four days of exposure to high RHwas the minimal exposure time to induce the diminished closureresponse. When leaves were grown in high RH prior to a 10 dmoderate RH treatment, the reduced stomatal closure responseto desiccation was only reversed in leaves (regions) which wereactively expanding during moderate RH treatment. This indicatesthat with respect to stomatal responses to desiccation, highRH leaf regions have a limited capacity to adapt to moderateRH conditions. The decrease in responsiveness to desiccationof the stomata, induced by long-term exposure to high RH, wasnot due to osmotic adjustment in the leaves. Within 1 d aftertransferring moderate RH-grown plants to a high RH, the abscisicacid (ABA) concentration of their leaves decreased to the lowlevel of ABA found in high RH-grown leaves. The closure responsein leaves exposed to high RH for 5 d, however, could not befully restored by the application of ABA. Transferring plantsfrom high to moderate RH resulted in increased ABA levels within2 d without a recovery of the stomatal closing response. Itis discussed that the diminished stomatal closure in plantsexposed to high RH could be due to changes in the signallingpathway for ABA-related closure of stomata or to an increasedsequestration of ABA by mesophyll tissue or the symplast inthe epidermis, induced by a longer period (several days) ofa low ABA level. Key words: Abscisic acid, desiccation, PSII efficiency, relative water content, stomatal closure, vapour pressure deficit, water potential Received 8 October 2007; Revised 5 November 2007 Accepted 9 November 2007  相似文献   

12.
Brassinosteroids (BRs) are essential for plant growth and development; however, whether and how they promote stomatal closure is not fully clear. In this study, we report that 24‐epibrassinolide (EBR), a bioactive BR, induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering a signal transduction pathway including ethylene synthesis, the activation of Gα protein, and hydrogen peroxide (H2O2) and nitric oxide (NO) production. EBR initiated a marked rise in ethylene, H2O2 and NO levels, necessary for stomatal closure in the wild type. These effects were abolished in mutant bri1‐301, and EBR failed to close the stomata of gpa1 mutants. Next, we found that both ethylene and Gα mediate the inductive effects of EBR on H2O2 and NO production. EBR‐triggered H2O2 and NO accumulation were canceled in the etr1 and gpa1 mutants, but were strengthened in the eto1‐1 mutant and the cGα line (constitutively overexpressing the G protein α‐subunit AtGPA1). Exogenously applied H2O2 or sodium nitroprusside (SNP) rescued the defects of etr1‐3 and gpa1 or etr1 and gpa1 mutants in EBR‐induced stomatal closure, whereas the stomata of eto1‐1/AtrbohF and cGα/AtrbohF or eto1‐1/nia1‐2 and cGα/nia1‐2 constructs had an analogous response to H2O2 or SNP as those of AtrbohF or Nia1‐2 mutants. Moreover, we provided evidence that Gα plays an important role in the responses of guard cells to ethylene. Gα activator CTX largely restored the lesion of the etr1‐3 mutant, but ethylene precursor ACC failed to rescue the defects of gpa1 mutants in EBR‐induced stomatal closure. Lastly, we demonstrated that Gα‐activated H2O2 production is required for NO synthesis. EBR failed to induce NO synthesis in mutant AtrbohF, but it led to H2O2 production in mutant Nia1‐2. Exogenously applied SNP rescued the defect of AtrbohF in EBR‐induced stomatal closure, but H2O2 did not reverse the lesion of EBR‐induced stomatal closure in Nia1‐2. Together, our results strongly suggest a signaling pathway in which EBR induces ethylene synthesis, thereby activating Gα, and then promotes AtrbohF‐dependent H2O2 production and subsequent Nia1‐catalyzed NO accumulation, and finally closes stomata.  相似文献   

13.
The number and density of stomata are controlled by endogenous and environmental factors. Despite recent advances in our understanding of stomatal development, mechanisms which prevent stomatal‐lineage entry remain unclear. Here, we propose that abscisic acid (ABA), a phytohormone known to induce stomatal closure, limits initiation of stomatal development and induces enlargement of pavement cells in Arabidopsis cotyledons. An ABA‐deficient aba2‐2 mutant had an increased number/proportion of stomata within a smaller cotyledon, as well as reduced expansion of pavement cells. This tendency was reversed after ABA application or in an ABA over‐accumulating cyp707a1cyp707a3 doublemutant. Our time course analysis revealed that aba2‐2 shows prolonged formation of meristemoids and guard mother cells, both precursors of stoma. This finding is in accordance with prolonged gene expression of SPCH and MUTE, master regulators for stomatal formation, indicating that ABA acts upstream of these genes. Only aba2‐2 mute, but not aba2‐2 spch double mutant showed additive phenotypes and displayed inhibition of pavement cell enlargement with increased meristemoid number, indicating that ABA action on pavement cell expansion requires the presence of stomatal‐lineage cells.  相似文献   

14.
Morphological and physiological characteristics of micropropagatedplants of Delphinium cv. Princess Caroline were studied. Leavesproduced in vitro showed poor control of water loss which appearsto result from restricted responses by stomata and not frompoor cuticular development. Stomata of leaves produced in vitrowere larger and more frequent than those produced during acclimatization.Despite the fact that stomata from isolated epidermis of leavesproduced in vitro reduced their apertures when exposed to turgor-reducingtreatments, they did not close fully. This, together with highstomatal frequencies might explain the poor control of waterloss shown by intact leaves produced in culture when exposedto dry air. While leaves from acclimatized plants showed almostcomplete closure with ABA, low water potentials, darkness andCO2, stomata from leaves produced in vitro reduced their apertureswhen exposed to those factors, but only to a limit. Therefore,stomata from leaves cultured in vitro seem to be partially functional,but some physiological or anatomical alteration prevents themfrom closing fully. Stomata from leaves produced in vitro wereparticularly insensitive to ABA which appears to be partly associatedwith the high cytokinin concentration in the culture medium.In the long-term, this stomatal insensitivity to ABA might contributeto plant losses when micropropagated plantlets are transferredto soil. Key words: Micropropagation, stomatal physiology, dehydration, PEG, ABA, BAP, darkness, CO2, Delphinium  相似文献   

15.
Radin JW  Parker LL  Guinn G 《Plant physiology》1982,70(4):1066-1070
Suboptimal N nutrition increased the water potential for stomatal closure in water stressed cotton (Gossypium hirsutum L.) leaves. This increased sensitivity to water stress had two components, increased accumulation of abscisic acid (ABA) and increased apparent stomatal sensitivity to ABA. Low N increased the threshold water potentials for stomatal closure and ABA accumulation by about 4 bars and 2 bars, respectively. Low N also greatly increased stomatal response to low concentrations of exogenous ABA applied to excised leaves through the transpiration stream. In low N leaves, kinetin decreased stomatal response to ABA to the level observed with high N leaves. Kinetin by itself had little effect on stomata, nor did it alter stomatal response to ABA in high N leaves. The results suggest a cytokinin-ABA balance which is altered by suboptimal N nutrition to favor stomatal closure during stress.

Ambient temperature and N nutrition interacted to alter stomatal response to water stress. Stress-induced ABA accumulation and apparent stomatal sensitivity to ABA were independently affected. The effects of each treatment, and their interaction, could be explained as the net result of changes in both accumulation and apparent sensitivity. Although the results document environmental control of stomatal response to ABA, either altered partitioning of ABA between active and inactive pools, or altered sensitivity of the guard cells, could account for the data.

  相似文献   

16.
We address the question of how soil flooding closes stomata of tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants within a few hours in the absence of leaf water deficits. Three hypotheses to explain this were tested, namely that (a) flooding increases abscisic acid (ABA) export in xylem sap from roots, (b) flooding increases ABA synthesis and export from older to younger leaves, and (c) flooding promotes accumulation of ABA within foliage because of reduced export. Hypothesis a was rejected because delivery of ABA from flooded roots in xylem sap decreased. Hypothesis b was rejected because older leaves neither supplied younger leaves with ABA nor influenced their stomata. Limited support was obtained for hypothesis c. Heat girdling of petioles inhibited phloem export and mimicked flooding by decreasing export of [14C]sucrose, increasing bulk ABA, and closing stomata without leaf water deficits. However, in flooded plants bulk leaf ABA did not increase until after stomata began to close. Later, ABA declined, even though stomata remained closed. Commelina communis L. epidermal strip bioassays showed that xylem sap from roots of flooded tomato plants contained an unknown factor that promoted stomatal closure, but it was not ABA. This may be a root-sourced positive message that closes stomata in flooded tomato plants.  相似文献   

17.
We studied the effects of drought on leaf conductance (g) and on the concentration of abscisic acid (ABA) in the apoplastic sap of Lupinus albus L. leaves. Withholding watering for 5d resulted in complete stomatal closure and in severe leaf water deficit. Leaf water potential fully recovered immediately after rewatering, but the aftereffect of drought on stomata persisted for 2d. ABA and sucrose were quantified in pressurized leaf xylem extrudates. We assumed that the xylem sucrose concentration is negligible and hence that the presence of sucrose in leaf extrudates indicated that they were contaminated by phloem. To eliminate this interference, the concentration of ABA in leaf apoplast was estimated by extrapolation to zero sucrose concentration, using the regression between ABA and sucrose concentrations. The estimated apoplastic ABA concentration increased by 100-fold with soil drying and did not return to pre-stress values immediately following rewatering. g was closely related to the concentration of ABA in leaf apoplast. Furthermore, the feeding of exogenous ABA to leaves detached from well-watered plants brought about the same degree of depression in g as resulted from the drought-induced increase in ABA concentration. We therefore conclude that the observed changes in the concentration of ABA in leaf apoplast were quantitatively adequate to explain drought-induced stomatal closure and the delay in stomatal reopening following rewatering.  相似文献   

18.
The regulative role of ABA in the rapid plant stomatal reactions in response to salinity was investigated. The influence of the short-term salinity on the overall ABA accumulation and its distribution within the mature leaf (revealed by immunohystochemical technique) and stomatal conductance of barley (Hordeum vulgare L.) were determined. Rapid bulk leaf ABA accumulation and increase in ABA immunolabeling in the mesophyl and guard cells of stomata were shown. The bulk ABA increasing in mature barley leaves coincided with stomatal closure induced by salt treatment indicating on the ABA contribution to the rapid stomatal closure.  相似文献   

19.
Commelina communis stomata closed within 1 h of transferring intact plants from 27 degrees C to 7 degrees C, whereas tobacco (Nicotiana rustica) stomata did not until the leaves wilted. Abscisic acid (ABA) did not mediate cold-induced C. communis stomatal closure: At low temperatures, bulk leaf ABA did not increase; ABA did not preferentially accumulate in the epidermis; its flux into detached leaves was lower; its release from isolated epidermis was not greater; and stomata in epidermal strips were less sensitive to exogenous ABA. Stomata of both species in epidermal strips on large volumes of cold KCl failed to close unless calcium was supplied. Therefore, the following cannot be triggers for cold-induced stomatal closure in C. communis: direct effects of temperature on guard or epidermal cells, long-distance signals, and effects of temperature on photosynthesis. Low temperature increased stomatal sensitivity to external CaCl(2) by 50% in C. communis but only by 20% in tobacco. C. communis stomata were 300- to 1,000-fold more sensitive to calcium at low temperature than tobacco stomata, but tobacco epidermis only released 13.6-fold more calcium into bathing solutions than C. communis. Stomata in C. communis epidermis incubated on ever-decreasing volumes of cold calcium-free KCl closed on the lowest volume (0.2 cm(3)) because the epidermal apoplast contained enough calcium to mediate closure if this was not over diluted. We propose that the basis of cold-induced stomatal closure exhibited by intact C. communis leaves is increased apoplastic calcium uptake by guard cells. Such responses do not occur in chill-sensitive tobacco leaves.  相似文献   

20.
Cytokinins and auxins are major phytohormones involved in various aspects of plant growth and development. These phytohormones are also known to antagonize the effects of abscisic acid (ABA) on stomatal movement, and to affect ethylene biosynthesis. As ethylene has an antagonistic effect on ABA-induced stomatal closure, the possibility that the antagonistic effects of these phytohormones on ABA were mediated through ethylene biosynthesis was investigated. Both the cytokinin, 6-benzyladenine (BA), and the auxin, 1-naphthaleneacetic acid (NAA), antagonized ABA-induced stomatal closure in a manner similar to that following application of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). However, these effects were negated when ethylene signalling, perception, or biosynthesis were blocked. As stomatal aperture is regulated by changes in guard cell volume, ABA application was found to reduce the volume of the guard cell protoplasts (GCP). It was found that BA, NAA, or ACC application compensated perfectly for the reduction in GCP volume by ABA application in WT plants. The above observations suggest that cytokinins and auxins inhibit ABA-induced stomatal closure through the modulation of ethylene biosynthesis, and that ethylene inhibits the ABA-induced reduction of osmotic pressure in the guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号