首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Etoposide is a widely prescribed anticancer drug that stabilizes covalent topoisomerase II-cleaved DNA complexes. The drug contains a polycyclic ring system (rings A-D), a glycosidic moiety at C4, and a pendant ring (E-ring) at C1. Interactions between human topoisomerase IIα and etoposide in the binary enzyme--drug complex appear to be mediated by substituents on the A-, B-, and E-rings of etoposide. These protein--drug contacts in the binary complex have predictive value for the actions of etoposide within the ternary topoisomerase IIα--drug--DNA complex. Although the D-ring of etoposide does not appear to contact topoisomerase IIα in the binary complex, etoposide derivatives with modified D-rings display reduced cytotoxicity against murine leukemia cells [Meresse, P., et al. (2003) Bioorg. Med. Chem. Lett. 13, 4107]. This finding suggests that alterations in the D-ring may affect etoposide activity toward topoisomerase IIα in the ternary enzyme--drug--DNA complex. Therefore, to address the potential contributions of the D-ring to the activity of etoposide, we characterized drug derivatives in which the C13 carbonyl was moved to the C11 position (retroetoposide and retroDEPT) or the D-ring was opened (D-ring diol). All of the D-ring alterations decreased the ability of etoposide to enhance DNA cleavage mediated by human topoisomerase IIα in vitro and in cultured cells. They also weakened etoposide binding in the ternary enzyme--drug--DNA complex and altered sites of enzyme-mediated DNA cleavage. On the basis of these findings, we propose that the D-ring of etoposide has important interactions with DNA in the ternary topoisomerase II cleavage complex.  相似文献   

2.
Masateru Miyano 《Steroids》1981,38(6):703-707
The ring contraction of 18α-mesyloxy-20α-hydroxy-18,20-cyclopregn-4-en-3-one (Ib) and 18α-mesyloxy-20α-hydroxy-21-acetyloxy-18,20-cyclo-pregn-4-en-3-one (Id) took place upon exposure to Florisil at 25 °C, producing 18α-acetyl-17,18-cycloandrost-4-en-3-one IIa) and 18α-acetox-yacety1-17, 18-cycloandrost-4-en-3-one (IIb) respectively. A similar ring contraction of 18α,20α-dihydroxy-18,20-cyclopregn-4-en-3-one (Ia) took place upon electron impact. Deuterium labeling demonstrated that the first steps of mass spectral fragmentation of Ia were the rearrangement to IIa and the oxidative cleavage to 3,18,20-trioxo-4-pregnene (IVa).  相似文献   

3.
Bovine adrenal 20α-hydroxysteroid oxido-reductase has been measured in the glands from animals of various ages. The substrates 20α-hydroxyprogesterone and 17α,20α-dihydroxyprogesterone were employed under conditions favoring oxidation. The highest activity was found in the newborn and older but prepuberal glands and very little in fetal or mature tissue. This activity was notable with 20α-hydroxyprogesterone whereas 17α,20α-dihydroxyprogesterone remained unoxidized. These findings with respect to age may partly explain the adrenarche wherein the production of C-19 steroids by the adrenal rises sharply around the time of sexual maturation. Some work indicates that 20-keto and not 20-hydroxy C-21 steroids are precursors to side chain cleavage. The higher level of 20-hydroxysteroid oxido-reductase activity in the prepuberal organs suggests that this enzyme diverts possible C-21 precursors from this cleavage reaction.  相似文献   

4.
Liquid formulations of monoclonal antibodies (MAbs) typically undergo fragmentation near the papain cleavage site in the hinge region, resulting in Fab and Fab+Fc forms. The purpose of this study was to investigate whether this fragmentation is due to proteases. Four closely-related MAbs were exchanged into a pH 5.2 acetate buffer with NaCl and stored at -20 degrees C, 5 degrees C, 30 degrees C, or 40 degrees C for 1 month. Fragmentation generated size-exclusion chromatography (SEC) peak fractions that were analyzed by electrospray mass spectrometry to identify the cleavage sites. The effects of protein inhibitors or host cell proteins on fragmentation were also studied. The extent of fragmentation was equivalent for all four antibodies, occurring in the heavy chain hinge region Ser-Cys-Asp-Lys-Thr-His-Thr sequence. The fragment due to cleavage of the Asp-Lys bond showed two forms that differ by 18 Da. A synthetic peptide with the hinge region sequence terminating with Asp did not show fragmentation or the loss of 18 Da after incubation. Protease inhibitors did not affect rates of cleavage or modify sites of fragmentation. Degradation was not affected by host cell protein content. Fragmentation appears to be a kinetic process that is not caused by low levels of host cell proteases.  相似文献   

5.
Steroids' transformations in Penicillium notatum culture   总被引:2,自引:0,他引:2  
The application of Penicillium notatum genus for biotransformations of steroids has been investigated. The reactions observed include insertion of an oxygen atom into D-ring of steroids, 15alpha-hydroxylation of 17alpha-methyl testosterone derivatives, ester bond hydrolysis, and degradation of a testosterone derivatives side chain. Microbial production of testolactones, the biologically active compounds, was also achieved using this strain in up to 98% yield.  相似文献   

6.
Two D-homosteroids were isolated from the hydrolyzate of 5β-pregnane -3α,20α-diol disulfate (II) when it was refluxed in 3N hydrochloric acid. The structures of these steroids have been elucidated as 17α-methyl-D-homo-5β-androstane-3α, 17aβ-diol (VI) and 17α-methyl-17aγb-chloro-D-homo-5β-androstan-3α-ol (VIII) by instrumental analyses. The former was identical with a synthetic specimen derived from 5β-pregnane-3α,20β-diol di-sulfate (IV) by uranediol rearrangement. The main hydrolyzates obtained were 17α-ethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (V) and 5β-pregnane-3α, 20α-diol (III).  相似文献   

7.
The Claisen condensation of 3β-acetoxypregna-5,16-dien-20-one (1) with ethyl formate in the presence of sodium methylate in pyridine is known to lead to 3β-hydroxy-21-hydroxymethylidenepregna-5,16-dien-20-one (2) in good yield. With the methods described for the preparation of the saturated D-ring pyrazolyl series, the reactions of 2 with phenylhydrazine and its p-substituted derivatives in acetic acid resulted in mixtures of two steroidal regioisomers, the 1'-aryl-3'-pyrazolyl-(4a-e) and 1'-aryl-5'-pyrazolyl (5a-e) steroids. Compounds 4a-e are unknown in the literature. The arylpyrazoles produced were tested against 17α-hydroxylase/C(17,20)-lyase (P450(17α)) in vitro and neither of the regioisomers exerted efficient inhibition.  相似文献   

8.
Reich IL  Reich HJ  Kneer N  Lardy H 《Steroids》2002,67(3-4):221-233
Our previous finding that D-ring seco derivatives of dehydroepiandrosterone retained biologic activity (Reich et al., Steroids 1998;63:542-53) motivated us to synthesize and test a number of steroids in which the D-ring is retained but altered in various ways. Several new steroids were synthesized and characterized by (1)H and (13)C NMR spectroscopy. The availability of a number of closely related compounds allowed detailed (13)C chemical shift correlations. Using the induction of two thermogenic enzymes in rats, liver mitochondrial glycerophosphate dehydrogenase (GPDH) and cytosolic malic enzyme, as criteria of biologic activity some 30 compounds were assayed. Hydroxylation of dehydroepiandrosterone (DHEA) at the 16 alpha position was previously shown to diminish activity (Lardy et al., Steroids 1998;63:158-65); the corresponding 7-oxo compound is fully active. Hydroxylation at the 15 beta position of DHEA, 7-oxo-DHEA, or 16 alpha-hydroxy-7-oxo-DHEA greatly diminished the induction of GPDH but induction of malic enzyme was retained. Most 5,15 diene steroids tested had 2 weak, or no, ability to enhance the formation of GPDH but did increase malic enzyme.  相似文献   

9.
Structural determination of polyunsaturated fatty acids by gas chromatography-mass spectrometry (GC-MS) requires currently the use of nitrogen containing derivatives such as picolinyl esters, 4,4-dimethyloxazoline or pyrrolidides derivatives. The derivatization is required in most cases to obtain low energy fragmentation that allows accurate location of the double bonds. In the present work, the following metabolites of rumelenic (cis-9,trans-11,cis-15 18:3) acid, from rat livers, were identified: cis-8,cis-11,trans-13,cis-17 20:4, cis-5,cis-8,cis-11,trans-13,cis-17 20:5, cis-7,cis-10,cis-13,trans-15,cis-19 22:5, and cis-4,cis-7,cis-10,cis-13,trans-15,cis-19 22:6 acids by GC-MS as their 4,4-dimethyloxazoline and methyl esters derivatives. Specific fragmentation of the methyl ester derivatives revealed some similarity with their corresponding DMOX derivatives. Indeed, intense ion fragments at m/z=M+-69, corresponding to a cleavage at the center of a bis-methylene interrupted double bond system were observed for all identified metabolites. Moreover, intense ion fragments at m/z=M+-136, corresponding to allylic cleavage of the n-12 double bonds were observed for the C20:5, C22:5, C22:6 acid metabolites. For the long chain polyunsaturated fatty acids from the rumelenic metabolism, we showed that single methyl esters derivatives might be used for both usual quantification by GC-FID and identification by GC-MS.  相似文献   

10.
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a target of caspases during apoptosis: its cleavage onto 89- and 24-kDa fragments is considered to be a hallmark of the apoptotic mode of cell death. Another hallmark is the activation of endonuclease which targets internucleosomal DNA. The aim of the present study was to reveal cell cycle phase specificity as well as the temporal and sequence relationships of PARP cleavage vis-à-vis DNA fragmentation in two model systems of apoptosis, one induced by DNA damage via cell treatment with camptothecin (CPT) (mitochondria-induced pathway) and another by the cytotoxic ligand tumor necrosis factor alpha (TNF-alpha) (cell surface death receptor pathway). PARP cleavage was detected immunocytochemically using antibody which recognizes its 89-kDa fragment (PARP p89) while DNA fragmentation was assayed by in situ labeling of DNA strand breaks. The frequency and extent of PARP cleavage as well as DNA fragmentation were measured by mutiparameter flow and laser scanning cytometry. PARP cleavage, selective to S phase cells, was detected 90 min after administration of CPT. PARP cleavage in the cells treated with TNF-alpha was not selective to any cell cycle phase and was seen already after 30 min. DNA fragmentation trailed PARP cleavage by about 30 min and showed a similar pattern of cell cycle specificity. PARP p89 was present in nuclear chromatin but at least in the early phase of apoptosis it did not colocalize with DNA strand breaks. The rate of cleavage of PARP molecules in individual cells whether induced by CPT or TNF-alpha was rapid as reflected by the paucity of cells with a mixture of cleaved and noncleaved PARP molecules. In contrast, DNA fragmentation proceeded stepwise before reaching the maximal number of DNA strand breaks. Although time windows for PARP cleavage vs DNA fragmentation were different at early stages of apoptosis, a good overall correlation between the cytometric assays of apoptotic cells identification based on these events was observed in both CPT- and TNF-alpha-treated cultures.  相似文献   

11.
Sertoli cells from 17 day old rats convert progesterone to 20α-hydroxy-pregn-4-en-3-one and pregnenolone to 3β,20α-dihydroxy-5α-pregnane after 72 hours in vitro. The metabolites were identified by several systems of thin layer and gas chromatography, derivative formation and crystallization with authentic steroids. The production of 20α-hydroxy-pregn-4-en-3-one and 3β,20α-dihydroxy-5α-pregnane amounted to 1380 and 740 pmoles/h/mg protein which can account for the total amounts of these steroids reported in the testis. It is the first direct evidence that Sertoli cells can metabolize progesterone and pregnenolone and suggests that Sertoli cells contain the major, if not the only, amounts of 20α-hydroxysteroid dehydrogenase in the immature rat testis.  相似文献   

12.
Polar functional groups in the A- and D-ring (positions 3 and 17beta or 20) are common to all natural and synthetic steroid hormones. It was assumed that these pharmacophoric groups are involved in strong hydrogen bonding interactions with the respective steroid receptors. High resolution X-ray structures of the estrogen and androgen receptors have confirmed these assumptions. Also site-directed mutagenesis studies of the human progesterone receptor (hPR) suggest an important role for Cys891 in the recognition of the progesterone 20-carbonyl group. Surprisingly, the crystal structure of the hPR ligand binding domain (LBD) in complex with progesterone suggests that the carbonyl oxygen in position 20 (O20) is not involved in hydrogen bond contacts. To investigate these surprising and contradicting results further, we performed a molecular dynamics simulation of the hPR-progesterone complex in an aqueous environment. The simulation revealed hPR-Cys891 as the sole but weak hydrogen bonding partner of progesterone in the D-ring. In contrast to the site-directed mutagenesis data a major role of hPR-Cys891 in progesterone recognition could not be confirmed. Isolated hydrogen bond acceptors, such as the prosterone O20 group, in a relatively lipophilic environment of the receptor led to a decrease in affinity of the ligand. Based on this consideration and the structure of the PR, we designed compounds lacking such an acceptor function. If the X-ray structure and the calculations were right, these compounds should bind with comparable or higher affinity versus that of progesterone. E-17-Halomethylene steroids were synthesized and pharmacologically characterized in vitro and in vivo. Although the compounds are unable to form hydrogen bonds with the hPR in the D-ring region, they bind with superior affinity and exert stronger in vivo progestational effects than progesterone itself. Our investigations have confirmed the results of the X-ray structure and disproved the old pharmacophore model for progestogenic activity, comprising two essential polar functional groups on both ends of the steroid core. The 20-carbonyl group of progesterone is likely to play a role beyond PR-binding, e.g. in the context of other functions via the androgen and mineralocorticoid receptors and as a site of metabolic inactivation.  相似文献   

13.
The specificity of dexamethasone binding sites on nuclear envelopes (NE) and plasma membranes (PM) was determined in competition studies with natural and synthetic steroids. The binding affinities for nuclear envelopes and plasma membranes were then correlated with the three-dimensional structures of the ligands. Three major factors are implicated in the ability of the steroid to bind to the membrane sites: (1) the separation between the terminal oxygen atoms substituted at atoms C3 and C17, or attached to the substituent at C17, is found to be longer than 10 A for the medium and high affinity steroids; (2) the beta-orientation of the oxygen atom in the C17-substituent to the D-ring is favored over alpha-orientation; and (3) bulky substituents and nontypical configurations are not accepted by the binding sites. A nearly linear correlation between the O3...O (substituted at C17) distance and the binding affinity of the tested steroids is observed; explanations for the lack of linear correlation of some steroids are given. A preliminary model for the interaction of steroids with these membrane sites is proposed which requires two hydrogen bonding regions that interact with the 2 oxygen atoms and some steric restriction sites that prevent the binding of steroids with large substituents. The hydrophobicities of the steroids do not correlate with binding affinities to the dexamethasone binding sites; hydrophobicity seems to play a minor role in these steroid-membrane interactions. Comparisons of the specificity of the dexamethasone binding sites on membranes to the specificity of various steroid receptors are also presented.  相似文献   

14.
Rrp5p is the only ribosomal RNA processing trans-acting factor that is required for the synthesis of both 18S and 5.8S rRNAs in Saccharomyces cerevisiae. Mutational analyses have characterized modified forms of Rrp5p that either affect formation of 18S rRNA by inhibiting cleavage at sites A0/A1/A2, or synthesis of 5.8S rRNA by inhibiting cleavage at site A3. Here, we examine the rRNA maturation process associated with a RRP5 bipartite allele that codes for two noncontiguous parts of the protein. This slow-growing bipartite mutant has a unique rRNA-processing phenotype that proceeds without endonucleolytic cleavage at site A2. In wild-type cells, the A2 cleavage takes place on the 32S pre-rRNA and is responsible for the formation of 20S and 27SA2 species, the precursors of mature 18S and 5.8S/25S rRNAs, respectively. In the bipartite strain, such precursors were not detectable as judged by Northern analysis or in vivo labeling. They were replaced by the aberrant 21S species and the bypassing 27SA3 precursor, both descended from direct cleavage of 32S pre-rRNA at site A3, which provides an alternative rRNA maturation pathway in this strain. The 21S pre-rRNA is the sole detectable and most likely available precursor of 18S rRNA in this particular strain, indicating that 18S rRNA can be directly produced from 21S. Furthermore, 21S species were found associated with 43S preribosomal particles as similarly observed for the 20S pre-rRNA in the wild-type cells.  相似文献   

15.
Apoptosis is an important cell suicide program which involves the caspases activation and is implicated in physiological and pathological processes. Poly(ADP-ribose) polymerase (PARP) cleavage is often associated with apoptosis and has been served as one hallmark of apoptosis and caspase activation. In this study, we aimed to determine TGF-beta1-induced apoptosis and to examine the involvement of caspases and its relationship with PARP cleavage. TGF-beta1 induces strong apoptosis of AML-12 cells which can be detected by DNA fragmentation, FACS, and morphological assays. Z-VAD-fmk, a selective caspase inhibitor, partially inhibits the TGF-beta1-induced apoptosis; but has no effect on TGF-beta1-induced DNA fragmentation and PARP cleavage. However, BD-fmk, a broad-spectrum caspase inhibitor, completely suppresses TGF-beta1-induced apoptosis, but unexpectedly does not inhibit TGF-beta1-induced PARP cleavage. Furthermore, Z-VAD-fmk treatment is able to completely inhibit the daunorubicin-induced apoptosis in A-431 cells, but only slightly blocks the daunorubicin-induced PARP cleavage, whereas BD-fmk can inhibit both daunorubicin-induced apoptosis and PARP cleavage completely. In addition, we observed that both TGF-beta1-induced apoptosis and PARP degradation in AML-12 cells can be completely blocked by inhibiting the protein synthesis with cycloheximide. These results demonstrate for the first time that TGF-beta1-induced caspase-dependent apoptosis is associated with caspase-independent PARP cleavage that requires the TGF-beta1-induced synthesis of new proteins. The results indicate that caspase-3 is not a major caspase involved in TGF-beta1-induced apoptosis in AML-12 cells, and is not required for apoptosis-associated DNA fragmentation. The results also suggest that PARP cleavage may occur as an independent event that can be disassociated with cell apoptosis.  相似文献   

16.
F Ungar  R Gunville  R W Seabloom 《Steroids》1973,22(4):503-514
No 11β-hydroxysteroids were detected after 30 minutes incubations of progesterone-4-14C and pregnenolone-7α-3H with adrenals of Microtus pennsylvanicus. 11-Dehydrocorticosterone (Compd. A) was isolated as the major product and its identity confirmed by crystallization to constant specific activity. A tetrahydro derivative, 3α, 21-dihydroxy-5β-pregnane-11, 20-dione and an 18-hydroxy derivative, 18, 21-dihydroxy-4-pregnene-3,11, 20-trione were tentatively identified based-on Chromatographic behavior. The same products were observed with male adrenal and NADPH and with female adrenal using a NADPH generating system. Since the plasma manifested the typical fluorescence characteristics of corticosterone, the in vitro production of 11-keto steroids is considered to be the result of unusually high activity of the 11β-hydroxysteroid dehydrogenase in the Microtus adrenal.  相似文献   

17.
Cell-penetrating peptides (CPPs), including TAT-CPP, have been used to deliver exogenous proteins into living cells. Although a number of proteins fused to TAT-CPP can be delivered into various cells, little is known about the proteolytic cleavage of TAT-fusion proteins in cells. In this study, we demonstrate that a small heat shock protein (sHSP), alphaB-crystallin (αB-crystallin), delivered by TAT-CPP is susceptible to proteolytic cleavage by matrix metalloproteinase-1 (MMP-1) in cardiac myoblast H9c2 cells. Recombinant TAT-αB-crystallin was efficiently transduced into H9c2 cells. For a few hours following protein transduction, generation of a 14-kDa fragment, a cleavage band of TAT-αB-crystallin, increased in a time-dependent manner. This fragment was observed only in detergent-insoluble fractions. Interestingly, treatment with MMP inhibitors blocked the cleavage of TAT-αB-crystallin. In test tubes, recombinant MMP-1 processed TAT-αB-crystallin to generate the major cleavage fragment 14-kDa, as observed in the cells treated with TAT-αB-crystallin. The N-terminal sequences of the 14-kDa fragment were identified as Leu-Arg-Ala-Pro-Ser-Trp-Phe, indicating that this fragment is generated by cleavage at Phe54-Leu55 of αB-crystallin. The MMP-1-selective inhibitor abolished the production of 14-kDa fragments in cells. In addition, the cleaved fragment of TAT-αB-crystallin was significantly reduced in cells transfected with MMP-1 siRNA. Moreover, the enzymatic activity of MMP-1 was markedly increased in TAT-αB-crystallin-treated cells. TAT-αB-crystallin has a cytoprotective effect on H9c2 cells under hypoxic insult, moreover, MMP-1-selective inhibitor treatment led to even increased cell viability. These results suggest that MMP-1 is responsible for proteolytic cleavage of TAT-αB-crystallin during its intracellular transduction in H9c2 cells.  相似文献   

18.
Reference standards for some minor urinary steroid metabolites are sometimes unavailable. We describe a novel procedure to quantitate a urinary steroid metabolite of known structure and mass spectrum, using as a standard a compound which produces ions in common with it and has a similar retention time in gas chromatography-mass spectrometry. The steroid of interest was 18-hydroxy-11-dehydrotetrahydrocorticosterone (18-OH-THA), the major urinary metabolite of 18-hydroxycorticosterone (18-OH-B), a putative intermediate in the conversion of 11-deoxycorticosterone to aldosterone. The steroid used as an alternative to the authentic 18-OH-THA standard was beta-cortol which, like 18-OH-THA, produces a fragmentation ion at m/z 457. Allo-tetrahydrodeoxycorticosterone (5alpha-THDOC) was used as the internal standard. beta-Cortolone also has the fragmentation ion at m/z 449 (in common with beta-cortol) and an authentic standard is available commercially. To validate the procedure, we quantitated beta-cortolone urinary excretion rate against this alternative standard and also against authentic beta-cortolone standards. Both methods produced similar results (adjusted R(2): 0.998, P<0.001). The method was then used to measure urinary excretion of 18-OH-THA rate in healthy volunteers. The reference range obtained was 20-204 microgram/24 h (n=32). This is similar to the few results available by conventional assay. Method performance was also similar to other assays of urinary steroids. This procedure could be generally applicable for assays when authentic standards are not available but mass spectra are known or can be predicted.  相似文献   

19.
Steroid degradation by Comamonas testosteroni and Nocardia restrictus have been intensively studied for the purpose of obtaining materials for steroid drug synthesis. C. testosteroni degrades side chains and converts single/double bonds of certain steroid compounds to produce androsta-1,4-diene 3,17-dione or the derivative. Following 9α-hydroxylation leads to aromatization of the A-ring accompanied by cleavage of the B-ring, and aromatized A-ring is hydroxylated at C-4 position, cleaved at Δ4 by meta-cleavage, and divided into 2-hydroxyhexa-2,4-dienoic acid (A-ring) and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (B,C,D-ring) by hydrolysis. Reactions and the genes involved in the cleavage and the following degradation of the A-ring are similar to those for bacterial biphenyl degradation, and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation is suggested to be mainly β-oxidation. Genes involved in A-ring aromatization and degradation form a gene cluster, and the genes involved in β-oxidation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid also comprise a large cluster of more than 10 genes. The DNA region between these two main steroid degradation gene clusters contain 3α-hydroxysteroid dehydrogenase gene, Δ5,3-ketosteroid isomerase gene, genes for inversion of an α-oriented-hydroxyl group to a β-oriented-hydroxyl group at C-12 position of cholic acid, and genes possibly involved in the degradation of a side chain at C-17 position of cholic acid, indicating this DNA region of more than 100kb to be a steroid degradation gene hot spot of C. testosteroni. Article from a special issue on steroids and microorganisms.  相似文献   

20.
Qian Sun 《Steroids》2010,75(12):936-943
A novel and practical procedure was developed for the preparation of D-ring unsaturated 17-alkynyl steroids by Pd(PPh3)4/AgOAc-catalyzed coupling of steroidal 17-triflates and alkynes. Firstly treatment of the steroid-17-ones with PhN(Tf)2 and KHMDS in dried THF at −78 °C for 2 h gives the corresponding steroidal 17-triflates products in high yields (97-98%), following the coupling of steroidal 17-triflates and various 1-alkynes by Pd(PPh3)4/AgOAc-catalyzed in the presence of DIPEA for 24 h to yield the desired D-ring unsaturated 17-alkynyl steroids (86-97%). Moreover, it was found that the coupling reaction catalyzed by Pd[(C6H5)3P]4/AgOAc system is selective for aryl triflates or vinyl triflates. By optimizing the reaction conditions, the sole C17-coupling products from steroidal bistriflates were obtained in satisfactory yields. Since D-ring unsaturated 17-alkynyl steroids with conjugated double and triplet bond can be subsequently converted into pentacyclic steroids and 17-oxosteroid derivatives at the side chain of D-ring, this general method provides a highly efficient route to these biologically important compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号