首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collection of anatomically preserved conifer cones from the Early Cretaceous of Virginia contains two new species of the extinct pinaceous genus Pityostrobus. Superficially, the fossil cones resemble those of modern species of Picea. However, the fossils reveal such a peculiar mixture of anatomical features that they cannot be assigned to any extant genus of the Pinaceae. One of the new species, Pityostrobus hueberi, is most comparable with Pityostrobus corneti Alvin from the Early Cretaceous of Belgium. Pityostrobus virginiana, the other new species, differs from all other members of the genus in only slight—but nonetheless significant—attributes. Pityostrobus hueberi and P. virginiana are the first species of this genus to be reported from Early Cretaceous sediments of the North American Atlantic Coastal Plain. As such, they increase our knowledge of the structural variation exhibited by ancient members of the Pinaceae.  相似文献   

2.
3.
Extant pines of subsection Pinus (section Pinus, genus Pinus, Pinaceae) are predominantly distributed in Eastern Asia. However, the extent of diversification in the section has yet to be fully clarified. We reviewed fossil records of subsection Pinus from Japan and collected permineralized materials, in which anatomical details are preserved for better understanding of the diversification. Our results suggest that this subsection appeared in Japan no earlier than the Middle Eocene, with extant species (i.e., Pinus densiflora and Pinus thunbergii) appearing around the beginning of the Pleistocene. Pinus fujiii (Early Miocene to Early Pleistocene) is inferred to have a close affinity to P. thunbergii based on the medial arrangement of its leaf resin canals. Additionally, P. fujiii has a similar cone morphology to those of extant species living in China, bridging the morphological gap between P. thunbergii and Chinese relatives of P. thunbergii as inferred by molecular phylogenetic analyses. Our results also suggest that taxonomic revisions of Pinus miocenica and Pinus oligolepis are required among the Japanese fossil species reported to date.  相似文献   

4.
This new species is based on a single semifusinized cone from the Late Cretaceous (Cenomanian) of New Jersey. The cone is flattened but essentially complete. It is 55 mm long and 8 by 13 mm in diam. Scale apices are thin, rounded, and entire, lacking evidence of an umbo or spine. The vascular cylinder of the cone axis is organized as a series of separate strands. The scale is made up of a basal portion that stands out nearly perpendicular to the cone axis and a sharply upturned distal portion. The bract base has a pronounced abaxial keel. Bract and scale traces diverge from the vascular cylinder of the cone axis separately from one another. A poorly developed interseminal ridge is present at the chalazal end of the seeds. An unusual feature of the cone is the presence of a trichome-bearing epidermis on the cone axis, bract-scale complex, and near the scale apex. Resin canals diverge into the bract-scale complex abaxial to the scale trace with branches becoming adaxial to the scale trace outward. A number of features of the new species occur in cones of Abies, Cedrus, Keteleeria, Larix, Picea, Pseudolarix, Pseudotsuga, and Tsuga as well as in the extinct genus Pseudoaraucaria. Features of Pinus are absent. This suggests that Pseudoaraucaria may have served as an ancestral source for modern genera other than Pinus with Pityostrobus pubescens representing an evolutionary intermediate.  相似文献   

5.
CREBER  G. T. 《Annals of botany》1956,20(2):375-383
An account is given of a hitherto undescribed species of Pityostrobusthe specimens of which come from the Lower Greensand of theIsle of Wight and for which the name Pityostrobus jacksoni issuggested. Structurally it has the general characters of thecones of the modern genus Pinus but no immediate affinity toan individual species of that genus is proposed. As a highlycharacteristic feature of the cone the seed-scale complexespossess much inflated apophyses, definite bract scales are alsopresent. The information obtained from sections through variousplanes is embodied in a reconstruction of one seed-scale complextogether with its bract scale.  相似文献   

6.
7.
Pinus mutoi is described as a new species on the basis of a permineralized seed cone from the Upper Cretaceous of Hokkaido, Japan. The cone is at least 20 cm long and up to 6 cm in diameter, consisting of a cone axis and numerous cone-scale complexes that are arranged helically around the axis. Two winged seeds are borne on the adaxial surface of each ovuliferous scale. Each complex receives a single trace from the vascular cylinder of the cone axis. In the scale base, all the resin canals occur abaxially to the vascular strand. The spatulate bract of the fossil is unique to the specimen among the cones of both living and fossil Pinus. The central umbo, broad sclerotic cortex of cone axis, and absence of serotinous features of the fossil cone suggest affinity with the subsection Sylvestres of the section Pinus, subgenus Pinus. This is the first record of permineralized preserved Pinus cone from the Cretaceous of Eastern Eurasia.  相似文献   

8.
? Premise of the study: Pinaceae and nonpinoid species are sister groups within the conifer clade as inferred from molecular systematic comparisons of living species and therefore should have comparable geological ages. However, the fossil record for the nonpinoid lineage of extant conifer families is Triassic, nearly 100 million years older than the oldest widely accepted Lower Cretaceous record for Pinaceae. An anatomically preserved fossil conifer seed cone described here extends the stratigraphic range of Pinaceae nearly 30 million years, thus reducing the apparent discrepancy between evidence from the fossil record and inferences from systematic studies of living species. ? Methods: Material was prepared as serial thin sections by the cellulose acetate peel technique, mounted on microscope slides, and viewed and photographed using transmitted light. ? Key results: A large cylindrical cone consisting of bract-scale complexes that diverge from the cone axis in a helical phyllotaxis has bracts and scales that separate from each other in the midregion and are of equal length and of nearly equal width. The cone has two inverted and winged seeds that are attached to the adaxial surface of each cone scale and, thus, represents an early member of the Pinaceae. ? Conclusions: Eathiestrobus mackenziei gen. et sp. nov. extends the fossil record for well-documented members of the family Pinaceae from the Lower Cretaceous to the Kimmeridgian Stage of the Upper Jurassic. This species also clarifies the set of characters that are diagnostic for seed cones of Pinaceae and reveals possible plesiomorphic characters for seed cones of the family.  相似文献   

9.
A new species, Piceoxylon burejense sp. nov. (Pinaceae), is described from the Middle Maastrichtian (Upper Cretaceous) of the Zeya-Bureya Basin, Amur Region (Russian Far East) based on the fossil wood anatomy. The new species is characterized by a combination of anatomical wood features of the modern genera Picea and Larix. The fossil wood of Pinaceae was found in the Cretaceous deposits of the Amur Region for the first time.  相似文献   

10.
Silicified leaves, dwarf shoots, pollen cones, and seed cones of Pinus from a Late Miocene chert bed within the Yakima Basalt Formation near Yakima, Washington are interpreted as coming from a single new species, P. foisyi. The needles and dwarf shoots are those of a three-needle pine. The needles contain two to four medial resin canals, a biform hypodermis, and endodermal cells with uniformly thickened walls. The pollen cones are ellipsoidal and about 1 cm long, and many contain bisaccate pollen grains. The seed cones are at least 6 cm long and are slightly asymmetrical. The cone axis has a broad sclerotic outer cortex, and the seed wing extends from a thick parenchymatous base. The scale apex bears a conspicuously swollen projection. The foliage and seed cones are identifiable with the Subgenus Pinus, Section Pinus, Subsection Oocarpae independently of one another, and together indicate a fossil species related to the modem Californian closed cone pines. Pinus foisyi represents one of the earliest occurrences of cone asymmetry associated with this group. However, cone serotiny characteristic of the modem species appears to have evolved after the Late Miocene.  相似文献   

11.
Gnetalean compression-impression fossils are described from the Early Cretaceous Yixian Formation, Liaoning Province, north-eastern China, and assigned to six species of Liaoxia Cao et S.Q. Wu. The fossils have opposite-decussate phyllotaxis and cones comprising 2–12 pairs of bracts. Ovulate cones have seeds typically in a distal position. The species differ from each other and from previously described fossils in the absence or presence of leaves, shape of cones and seeds, and shape and position of cone bracts. The species of Liaoxia are probably close relatives of extant species of Ephedra L., but diagnostic reproductive details that could confirm this hypothesis are not preserved. The restricted information in the fossils and the poorly understood morphological diversity of extant Ephedra, prevent assignment of the fossils to any particular subgroup of Ephedra, as well as an explicit exclusion of them from the extant genus.  相似文献   

12.
《Palaeoworld》2023,32(1):116-123
The oldest fossils assigned to Athyrium (mostly based on the sorus morphology) comprise fronds and spores from the Lower Cretaceous of Northeast Asia. However, most molecular dating suggests that extant Athyrium diverged from its sister genus during the Eocene or later, implying that the Cretaceous fossils probably belong to another polypodiaceous taxon. By examining the sorus morphology of extant genera related to the family Athyriaceae, we found that the primary diagnostic feature for assigning the Cretaceous fossils to Athyrium, i.e., the sorus shape, is common to the entire extant family, or plesiomorphic for the genus. As the fronds are more commonly preserved than the reproductive parts, we compared the fossil frond morphology with those of living taxa of the family that is divided into two types. The Cretaceous fossil we examined here bears the frond’s costal groove characters on adaxial side, which is more closely related to that of the Deparia-clade instead of the clade including Athyrium and other genera of the family. The observation is further confirmed by the cladistic analysis using morphological characters. The systematic position of the Early Cretaceous “Athyrium” was resolved as a stem member of the total Athyriaceae using a tip-dating approach with the Fossilized Birth-Death model in a Bayesian framework. Our study suggests that Early Cretaceous fossils previously assigned to Athyrium require taxonomic revision.  相似文献   

13.
Comparative anatomy of resin ducts of the Pinaceae   总被引:5,自引:0,他引:5  
 Resin ducts are common in the Pinaceae. The comparative anatomy of stems and leaves of 50 species and two varieties from ten genera has been investigated. The structure and distribution of resin ducts differ among genera. Resin ducts occur in foliage leaves of ten genera of Pinaceae. Cortical resin ducts are absent in the stems of Pseudolarix and Larix. Resin ducts only occur in the secondary xylem of stems of Pinus, Picea, Cathaya, Larix, Pseudotsuga and some Keteleeria species. All of the epithelial and sheath cells are alive and thin-walled in the resin ducts of stem cortex and mesophyll. Except for Pinus the epithelial cells of resin ducts in the secondary xylem of stems have thick, lignified walls. Comparative study shows there are obvious differences in the resin ducts of different genera; apparent differences do not exist, however, in the resin ducts of different species of the same genus. According to the structure and distribution of the resin ducts in ten genera of Pinaceae, a synoptical arrangement of the genera is given and generic relationships of the Pinaceae are discussed. Received: 12 September 1995 / Accepted: 14 March 1996  相似文献   

14.
Several silicified ovulate cones from the late middle Miocene (Barstovian) represent a new species, Picea wolfei Crabtree. This is the second species of Picea for which structurally preserved seed cones are known to be reported from the Tertiary. The cones are 5.0–8.0 cm long and 1.5–2.0 cm at their greatest diameter. Ovuliferous scales are inserted helically around the cone axis and are recurved at their point of divergence. Each scale is broadly obovate to spatulate with a rounded apex and bore two seeds adaxially. The bract subtending the scale is 4.5–7.3 mm long and is fused to the scale for 1.4–2.0 mm. Each bract has an inflated keel-like base which projects abaxially between the seeds of adjacent scales. The fossil cones superficially resemble those of the extant Picea breweriana, yet differ from them anatomically. The new species also resembles Picea lahontense, a fossil compression from the Miocene Trout Creek Flora of south-central Oregon, but the different modes of preservation preclude meaningful comparison. Picea diettertiana, the only structurally preserved fossil cone of this genus previously described, is quite dissimilar in that it lacks a sclerotic pith.  相似文献   

15.
Rhizopogon (Boletales) is an ectomycorrhizal fungal genus that exhibits a strong specificity to Pinaceae. This strict association occurs almost exclusively with Pinus and Pseudotsuga, while associations with other genera in Pinaceae are inconclusive. Here, we describe Rhizopogon laricinus sp. nov. associated with Larix cajanderi distributed in northeastern Siberia, where forest fires are frequent. We confirmed the host identity by comparing rDNA internal transcribed spacer (ITS) sequences obtained from basidiomata and ectomycorrhizal root tips collected at the same sites. Morphological characteristics and molecular identification revealed that R. laricinus is a new species associated with Larix unequivocally. The molecular phylogeny based on ITS sequences placed this species sister to the subgenus Roseoli, which is specific to Pinus, and not to the Pseudotsuga-specific subgenus Villosuli. Thus, R. laricinus evolution does not correspond to host phylogeny as Larix and Pseudotsuga form a monophyletic clade. Instead, ecological traits of Rhizopogon for adapting to disturbed habitats may have driven the host shift to Larix under high-frequency fire ecosystems.  相似文献   

16.
17.
New species of the pine fossil wood, Pinus priamurensis sp. nov. (Pinaceae) from the Sazanka Formation (upper Middle Miocene–Upper Miocene) of the Erkovetskii Brown Coal Field (Amur Region) is described. The new species shares some wood anatomical features with modern species of the subsection Pinus (section Pinus, subgenus Pinus). This is the first record of fossil wood of Pinus in the Amur Region.  相似文献   

18.
19.
Ovulate cones identified as Abietites ellipticus Fontaine, from the Early Cretaceous of northern California, have been reinvestigated. Rather than being preserved as imprints as originally described, the fossils are petrified. Two cones are attached to needle-bearing twigs. The organs are similar to those of the living Cunninghamia lanceolata. However, the scale portion of the bract-scale complex of the fossil cones is situated close to the bract apex, while that in modern Cunninghamia cones is midway between the bract base and apex. This plus other structural differences warrant treatment of the material as a new species of Cunninghamiostrobus Stopes and Fujii.  相似文献   

20.
The Adelgidae form a small group of insects in the Aphidoidea. They are cyclically parthenogenetic with host alternating, multiple-generation complex life cycles and are restricted to certain host genera in the Pinaceae. Species that host alternate always have Picea as the primary host where sexual reproduction and gall formation occur, and another genus in the Pinaceae as the secondary host where a series of parthenogenetic generations are produced. Other species that do not host alternate complete their entire life cycle on one host and only reproduce parthenogenetically. We studied relationships within Adelgidae using DNA sequences from the mitochondrial COI, COII, and cytb genes, and the nuclear EF1alpha gene. Analysis of the combined data resulted in a well-resolved phylogeny in which the major adelgid clades correspond neatly to their association with secondary host genera. Specialization on each secondary host genus occurred only once and was followed by diversification on the host genus. Molecular dating of divergence times in the Adelgidae suggest that diversification among host genera occurred in the Late Cretaceous and Early Tertiary when the Pinaceae genera were diverging. It is not clear, however, whether the Adelgidae and Pinaceae co-diversified because the relationships among the Pinaceae genera are not fully resolved. We discuss implications for adelgid taxonomy, life cycle evolution, and evolution of the interaction between adelgids and their host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号