首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 2013, an outbreak of Rhizopus rot caused by Rhizopus oryzae occurred in cucumber grafted onto pumpkin rootstock sampled from seedling farms in Changnyeong, South Korea. A water‐soaked appearance of the affected tissue was the first symptom of this soft fungal rot in the seedling stems of grafted cucumber. Lesions at the graft sites softened and rapidly, rotted, and turned brown or dark brown. Measurements and taxonomic characteristics were most similar to R. oryzae. DNA sequencing and phylogenetic analysis of the internal transcribed spacer rRNA gene region confirmed that the isolates were indeed R. oryzae. Koch's postulates were supported by pathogenicity tests conducted on healthy plants. Based on mycological characteristics, pathogenicity test, and molecular analysis, the causal fungus was identified as R. oryzae Went & Prinsen Geerligs. To our knowledge, this is the first report of Rhizopus rot caused by R. oryzae in seedlings of grafted cucumber on pumpkin rootstock in South Korea.  相似文献   

2.
Stem rot was recorded on Orobanche aegyptiaca in Shihezi City, Xinjiang Uygur Autonomous Region, China from 2010 to 2011. The pathogen was isolated repeatedly from the infected stems and was identified as Rhizopus oryzae based on morphology, cultural features and molecular analysis. Koch's postulates were supported by pathogenicity tests conducted on healthy plants grown on processing tomato and melon. To our knowledge, this paper is the first to report the occurrence of R. oryzae stem rot on O. aegyptiaca.  相似文献   

3.
Field resistances against Sclerotinia rot (SR) (Sclerotinia sclerotiorum) were determined in 52 Chinese genotypes of Brassica oleracea var. capitata, 14 Indian Brassica juncea genotypes carrying wild weedy Brassicaceae introgression(s) and four carrying B‐genome introgression, 22 Australian commercial Brassica napus varieties, and 12 B. napus and B. juncea genotypes of known resistance. All plants were individually inoculated by securing an agar disc from a culture of S. sclerotiorum growing on a glucose‐rich medium to the stem above the second internode with Parafilm tape. Mean stem lesion length across tested genotypes ranged from <1 to >68 mm. While there was considerable diversity within the germplasm sets from each country, overall, 65% of the B. oleracea var. capitata genotypes from China showed the highest levels of stem resistance, a level comparable with the highest resistance ever recorded for oilseed B. napus or B. juncea from China or Australia. One Indian B. juncea line carrying weedy introgression displayed a significant level of both stem and leaf resistance. However, the vast majority of commercial Australian oilseed B. napus varieties fell within the most susceptible 40% of genotypes tested for stem disease. There was no correlation between expressions of stem versus leaf resistance, suggesting their independent inheritance. A few Chinese B. oleracea var. capitata genotypes that expressed combined extremely high‐level stem (≤1 mm length) and leaf (≤0.5 mean number of infections/plant) resistance will be particularly significant for developing new SR‐resistant horticultural and oilseed Brassica varieties.  相似文献   

4.
5.
Brown spot, caused by the fungus Bipolaris oryzae, is one of the most destructive diseases of rice. This study investigated the effect of zinc rates on the development of brown spot in rice. Rice plants (cv. ‘Metica‐1′) were grown in hydroponic culture amended with Zn rates (applied as ZnSO4.7H2O) of 0, 0.5, 1, 2 and 4 μm and inoculated with B. oryzae. The foliar concentration of Zn was determined. Leaf samples were assessed for disease severity, and then, area under brown spot progress curve (AUBSPC) was calculated. The relationship between Zn concentrations on leaf tissues and the rates of this micronutrient was best described by a positive linear regression model, while the relationship between the Zn rates and the AUBSPC was best described with a positive quadratic regression model. The correlation between Zn concentrations on leaf tissues and AUBSPC was positive and significant (r = 0.68, P < 0.05). The results from this study showed that high foliar concentration of Zn was associated with increasing rice susceptibility to brown spot.  相似文献   

6.
Thirty Alternaria brassicae (Berk.) Sacc. isolates from diverse geographical locations of India were studied for pathogenic variability on seed, cotyledon and true leaves of Brassica species. Seed germination was reduced maximum by isolate BAB‐39 in Brassica juncea cultivar Varuna (22.1%), Brassica rapa var. Toria cultivar PT‐303 (12%), Brassica carinata cultivar Kiran (12%), Brassica napus cultivar GSL‐1 (11%) and tolerant source of B. juncea genotype PHR‐2 (7%), although least by isolate BAB‐49. Maximum lesion size on leaf was recorded in B. juncea cultivar Rohini (11.2, 16.5 and 16.8 mm) with isolates BAB‐09 (Pantnagar), BAB‐19 (Bharatpur) and BAB‐39 (Kangra), respectively, and categorized as highly virulent, while minimum lesion size of 3.2, 3.7 and 3.8 mm was observed with isolates BAB‐47 (Tonk), BAB 49 (Jobner) and BAB 04 (Kamroop), respectively, considered the weak isolates. On B. alba, BAB‐09, BAB‐19 and BAB‐39 isolates caused maximum lesion size of 3.7, 3.8 and 3.9 mm, respectively, even though it showed maximum tolerance. In both seed and cotyledon inoculation method, the per cent Alternaria blight severity above 80% was observed with isolate of BAB‐39 (91.5%), BAB‐19 (89.0%), BAB‐09 (85.5%) and least in isolate BAB‐49 (34.0%). Brassica seed, cotyledon and leaf showed the similar positive response for categorizing A. brassicae isolates as virulent and avirulent. This information could be used to the development and assessment of resistant brassica germplasm, especially with A. brassicae populations exhibiting increased virulence.  相似文献   

7.
8.
Sakuranetin ( 1 ) is a flavanone phytoalexin that has been reported to play an important role in disease resistance in rice plants. The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae) has been reported to metabolize 1 to lower its antifungal activity. Here, two flavanones, sternbin ( 2 ) and naringenin ( 3 ), were identified as metabolites of 1 in Poryzae suspension culture by liquid chromatography tandem mass spectrometry (LC/MS/MS). The inhibition of 1 , 2 , and 3 on Poryzae mycelial growth were 45%, 19%, and 19%, respectively, at a concentration of 100 μm . Thus, 2 and 3 are detoxified metabolites of 1 by Poryzae.  相似文献   

9.
In this study, the protective effect of red light against the brown spot disease caused by the fungus Bipolaris oryzae in rice was investigated. Lesion formation was significantly inhibited on detached leaves that were inoculated with B. oryzae and kept under red for 48 h, but it was not inhibited when the leaves were kept under natural light or in the dark. The protective effect was also observed in intact rice plants inoculated with B. oryzae; the plants survived under red light, but most of them were killed by infection under natural light or dark condition. Red light did not affect fungal infection in onion epidermis cells or heat‐shocked leaves of rice, and it did not affect cellulose digestion ability; this suggested that the protective effect is due to red‐light‐induced resistance. In addition, the degree of protection increased as the red light dosage increased, regardless of the order of the red light and natural light period, indicating that red‐light‐induced resistance is time dependent. Feeding of detached leaves with a tryptophan decarboxylase inhibitor, s‐α‐fluoromethyltryptophan (0.1 mm ), for 24 h inhibited the development of resistance in response to red light irradiation. Suppression of resistance was also observed in leaves treated with a phenylalanine ammonia‐lyase inhibitor, α‐aminooxy acetic acid (0.5 mm ). These results suggest that the tryptophan and phenylpropanoid pathways are involved in the red‐light‐induced resistance of rice to B. oryzae.  相似文献   

10.
Okinawa, the only subtropical area in Japan with numerous island ecosystems, is expected to have diverse microbial resources. Recently, we reported the construction of a culture filtrate library with microbes originally isolated from soils in Okinawa, including the Yaeyama Archipelago, and validated its phylogenetic diversity. In the present study, we investigated the inhibitory effect of the cell extract (CE) from microbial isolate 3–45 against Magnaporthe oryzae in rice (Oryza sativa). Abnormal appressorium formation by M. oryzae was induced in the presence of the CE from isolate 3–45. Additionally, melanization of appressoria was inhibited in the presence of CE from isolate 3–45. Sequence analysis of the 16S rDNA region of isolate 3–45 indicated that it shared similarities with Streptomyces erythrochromogenes. When rice leaves were inoculated with M. oryzae in the presence of CE from isolate 3–45, blast lesion formation was inhibited compared to leaves treated with M. oryzae in the absence of CE from isolate 3–45. In addition, M. oryzae infective activity was significantly inhibited in rice leaf sheaths treated with CE from isolate 3–45. Furthermore, abnormal appressorium formation was observed in the presence of heat‐treated CE from isolate 3–45. These results suggest that CE from isolate 3–45 can protect rice from blast disease caused by M. oryzae. Further studies are required to identify the active compounds present in 3–45‐CE and to clarify its mechanism of inhibition in full detail. The present study on isolate 3–45 might contribute to the development of a new fungicide for controlling rice blast disease caused by M. oryzae.  相似文献   

11.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

12.
Fungus gnats (Bradysia impatiens) can be a serious pest especially to plants grown in confined areas, and although various methods of control are available, safer and more effective control measures are desirable. Mustard seed meal, a by‐product remaining after oil removal for use as a biodiesel feedstock, contains compounds called glucosinolates that hydrolyse to insecticidal 2‐propenyl isothiocyanate. Our objective was to produce a dose‐response curve for making recommendations of Brassica juncea seed meal applications that will result in fungus gnat larvae control. Twenty colony‐raised fungus gnat larvae were added to 20 g (226 per cm3) of potting media, and adult emergence monitored during 2 weeks using yellow sticky cards. Treatments included without meal, detoxified meal and 19 doses ranging from 0.05 to 3.0 g seed meal. A logistic model was used to predict an LC50 of 0.18 and an LC90 of 0.38 g seed meal for the 20‐g pot. The amounts of seed meal required to produce the observed LC50 and LC90 were predicted to produce 0.08 and 0.17 μmol 2‐propenyl isothiocyanate per cm3 potting medium, respectively. B. juncea seed meal has potential utility for the control of B. impatiens, thus warranting additional studies to determine the seed meal's chronic impact on fungus gnats, phytotoxicity and plant fertility benefits.  相似文献   

13.
14.
Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up‐regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)‐limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)‐limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)‐limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination.  相似文献   

15.
Bacillus strains are broadly studied for their beneficial role in plant growth and biological control of plant disease and pest; however, little is known about their underlying mechanisms. In this study, we assessed the controlling and defence‐related mechanisms of three Bacillus strains including rice seed‐associated strain B. subtilis A15, rhizobacterial strains B. amyloliquefaciens D29 and B. methylotrophicus H8, all of which are against bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae. Results indicated that all three strains showed strong biofilm formation ability. The culture filtrates of each strain significantly suppressed the growth and biofilm formation of X. oryzae, while changes in bacterial cell morphology such as cell swell and severe cell wall alterations were observed through the transmission electron microscopy images. PCR analysis revealed that all three strains harbour the antimicrobial‐associated genes that are responsible for biosynthesis of bacillomycin, fengycin, iturin and surfactin. Subsequent real‐time qPCR analysis revealed the upregulated expression of fenD and srfAA genes in D29 and H8, and fenD and ituC genes in A15 during their in vitro interaction with X. oryzae. It suggests that the antibacterial mechanisms of the three strains may be at least partially associated with their ability to secrete corresponding lipopeptides. Interestingly, the applications of the three strains in greenhouse conditions were found to be effective in controlling the BLB disease, which was achieved through the activation of inducing systemic resistance resulted from the enhanced activities of defence‐related enzymes. This is the first report of demonstration of the mode of antibacterial effect of Bacillus strains against X. oryzae. Overall, data from the current study provide valuable information for biological control of BLB disease in rice.  相似文献   

16.
Although strobilurins are one of the most effective and broad spectrum classes of systemic fungicides, they may also increase plant stress tolerance by modulating the activity of antioxidant enzymes. To address this issue, the effect of azoxystrobin (Az) on the activity of antioxidant enzymes and on the concentrations of antioxidant metabolites and oxidative stress‐related compounds was studied in rice plants (cv. Metica‐1) either inoculated or not with Bipolaris oryzae, the causal agent of brown spot (BS). The Az minimally affected the enzyme activities, but consistently increased the glutathione reduced (GSH) concentrations in the noninoculated plants. The activities of superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase and glutathione‐S‐transferase were increased upon B. oryzae infection, but such increases were greatly limited in the Az‐sprayed plants. Catalase activity decreased in the inoculated plants compared to the noninoculated plants regardless of fungicide treatment. The GSH concentration increased in response to the B. oryzae infection, and the Az‐sprayed plants sustained higher levels of GSH at advanced stages of fungal infection than did the nonsprayed plants. The inoculated plants exhibited an extensive oxidative stress as evidenced by higher concentrations of hydrogen peroxide and malondialdehyde compared to the noninoculated plants, but lower and later increases were recorded in the Az‐sprayed plants than in the nonsprayed plants. Therefore, Az greatly reduces B. oryzae‐induced oxidative stress by limiting BS development rather than by activating antioxidant enzymes. The GSH, however, seems to be Az‐modulated, and this may partially explain the constrained oxidative stress observed in the Az‐sprayed plants.  相似文献   

17.
Bowal or ferricrete, the final of land degradation, occurred only in tropical region. This study aimed at assessing the effects of bowalization on phytodiversity, life forms and morphological response of plant species using Combretum nigricans Leprieur ex Guill. & Perr. as a case study. Morphological parameters (height, number of stems, number of branches, diameter at breast height and crown diameter) of C. nigricans were determined in the sub‐humid zone of Benin. Plant communities were determined according to Multi‐Response Permutation Procedures analysis. Plant communities were more diversified on sand‐clay and concretion soils (control) compared with those described on bowal. C. nigricans developed more stems (3.6 ± 1.4 stems vs. 1.3 ± 0.4 stems), more branches (5.9 ± 2.4 branches vs. 3.2 ± 0.6 branches) and large crown diameter (5 ± 1.48 m vs. 3.4 ± 1.2 m) on bowal than on sand‐clay soil. The best adapted life forms on bowal were therophytes. Bowalization induced loss of phytodiversity, changes in species life forms and provoked local adaptation of tree species.  相似文献   

18.
The oomycete plant pathogen Phytophthora cinnamomi causes a highly destructive root rot that affects numerous hosts. Integrated management strategies are needed to control P. cinnamomi in seminatural oak rangelands. We tested how biofumigation affects crucial stages of the pathogen's life cycle in vitro, in infested soils under laboratory conditions and in planta. Different genotypes of three potential biofumigant plant species (Brassica carinata, Brassica juncea, Brassica napus) were collected at different phenological stages, analysed for their glucosinolate contents, and subsequently tested. The most effective genotypes against mycelial growth and sporangial production were further tested on the viability of chlamydospores in artificially infested natural soils and in planta on Lupinus luteus, a host highly susceptible to P.cinnamomi. Brassica carinata and B. juncea genotypes inhibited mycelial growth, decreased sporangial production, and effectively inhibited the viability of chlamydospores in soil, but only B. carinata decreased disease symptoms in plants. Effective genotypes of Brassica had high levels of the glucosinolate sinigrin. Biofumigation with Brassica plants rich in sinigrin has potential to be a suitable tool for control of oak root disease caused by P. cinnamomi in Spanish oak rangeland ecosystems.  相似文献   

19.
Leucine‐rich repeat receptor‐like proteins (LRR‐RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race‐specific R‐genes, including the LRR‐RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line ‘Glacier DH24287’ was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR‐RLP locus, conveying race‐specific resistance to L. maculans isolates harbouring AvrLm2. Several defence‐related LRR‐RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co‐immunoprecipitation of RLM2‐SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co‐expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.  相似文献   

20.
Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea‐level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co‐occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea, suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号