共查询到20条相似文献,搜索用时 0 毫秒
1.
Renata Sousa Resende Cristiane Aparecida Milagres Danielle Rezende Carlos Eduardo Aucique‐Perez Fabrício Ávila Rodrigues 《Journal of Phytopathology》2015,163(10):787-794
Anthracnose, caused by the hemiotrophic fungus Colletotrichum sublineolum, is one of the most important diseases affecting sorghum production worldwide. The main goal of this study was to select saprobe fungi from the semi‐arid north‐east of Brazil that could increase sorghum resistance to anthracnose and investigate this increased resistance at both physiological and biochemical levels. Plants were sprayed with Curvularia inaequalis, Gonytrichum macroladum, Memnoniella levispora, Pithomyces chartarum, Periconia hispidula, Phaeoisaria clematidia, Dictyochaeta heteroderae, Sarcopodium circinatum, Periconia byssoides, Moorella speciosa, Stachybotrys chartarum, Pseudobotrytis terrestres, Memnoniella echinata, Stachybotrys globosa and Gonytrichum clamydosporium 24 h before inoculation with C. sublineolum. Plants sprayed with water served as the control treatment. The area under the anthracnose progress curve was significantly reduced in comparison with the control treatment only for plants sprayed with C. inaequalis. Therefore, C. inaequalis was selected for physiological and biochemical evaluations. The peroxidases, chitinases and β‐1,3‐glucanases activities were significantly higher for plants sprayed with C. inaequalis and inoculated with C. sublineolum than for plants not sprayed with C. inaequalis and inoculated with C. sublineolum. There was no apparent decrease in the values of net carbon assimilation rate, stomatal conductance to water vapour or transpiration rate for plants sprayed with C. inaequalis and infected by C. sublineolum in comparison with plants not sprayed with C. inaequalis and infected by C. sublineolum. In conclusion, sorghum resistance against C. sublineolum infection was greatly potentiated by C. inaequalis without any apparent change in the photosynthetic capacity of the infected plants. 相似文献
2.
Wiler R. Moreira Fabrício Avila Rodrigues Henrique Silva Silveira Duarte 《Journal of Phytopathology》2013,161(10):749-751
Brown spot, caused by the fungus Bipolaris oryzae, is one of the most destructive diseases of rice. This study investigated the effect of zinc rates on the development of brown spot in rice. Rice plants (cv. ‘Metica‐1′) were grown in hydroponic culture amended with Zn rates (applied as ZnSO4.7H2O) of 0, 0.5, 1, 2 and 4 μm and inoculated with B. oryzae. The foliar concentration of Zn was determined. Leaf samples were assessed for disease severity, and then, area under brown spot progress curve (AUBSPC) was calculated. The relationship between Zn concentrations on leaf tissues and the rates of this micronutrient was best described by a positive linear regression model, while the relationship between the Zn rates and the AUBSPC was best described with a positive quadratic regression model. The correlation between Zn concentrations on leaf tissues and AUBSPC was positive and significant (r = 0.68, P < 0.05). The results from this study showed that high foliar concentration of Zn was associated with increasing rice susceptibility to brown spot. 相似文献
3.
Luciano Viana Cota André Gomes Coelho Souza Rodrigo Veras Costa Dagma Dionísia Silva Fabrício Eustáquio Lanza Frederick Mendes Aguiar José Edson Fontes Figueiredo 《Journal of Phytopathology》2017,165(7-8):479-485
The leaf anthracnose disease in sorghum, caused by Colletotrichum sublineolum (Henn. ex Sacc. & Trotter), is widely distributed throughout its Brazilian cultivation areas. The disease can cause significant losses in grain yield and quality. This study aimed to quantify the effects of leaf anthracnose on grain yield of different sorghum genotypes. Two elite inbred lines of sorghum, BR009 (susceptible) and BR008 (moderately resistant), and the hybrids, BR304 and MR43 (susceptible), BRS310 and DKB599 (moderately resistant) and BRS308 and AG1060 (resistant), were planted in a complete randomized block design with three replicates. The disease severity (DS) was evaluated weekly, starting from the onset of the first foliar symptoms, and yield losses were estimated using linear regression analysis. Leaf anthracnose significantly reduced sorghum yields in the susceptible genotypes. The highest yield loss of 86% was observed in the inbred line BR009, when the disease severity reached 100%. For the hybrids, the grain yield loss varied from 35% (BRS310) to 72% (BRS308). According to the adjusted model, a grain yield reduction of 23.48 kg/ha for BR304, 14.57 kg/ha for BRS310 and 15.91 kg/ha for DKB599 was observed for every 1% increase in disease severity. We demonstrate for the first time the effect of leaf anthracnose disease on grain sorghum yields under Brazilian conditions. The results from this study provide a starting point for developing new strategies for the integrated disease management of sorghum anthracnose. 相似文献
4.
Daniel A. Schurt Ueder P. Lopes Henrique S. S. Duarte Fabrício Á. Rodrigues 《Journal of Phytopathology》2014,162(9):617-620
This study investigated the effect of magnesium (Mg) on sheath blight, caused by Rhizoctonia solani, development on rice plants from cultivars BR‐IRGA 409 and Labelle grown in nutrient solution containing 0.062, 0.125, 0.25 and 0.50 mm of Mg. Sheath blight progress on inoculated sheaths was evaluated by measuring lesions expansion (mm) at 24, 48, 72 and 96 h after inoculation. Data were used to calculate the area under lesion expansion progress curve (AULEPC). The relationship between the foliar Mg concentration and the Mg rates was quadratic. The Mg concentration on leaf sheaths tissue was highest at the Mg rates of 0.389 and 0.400 mm , respectively, for cultivars BR‐IRGA 409 and Labelle. A linear model best described the relationship between the AULEPC and the Mg rates. The AULEPC decreased by 48.7 and 26.2% for plants of cultivars BR‐IRGA 409 and Labelle, respectively, as the Mg rates in the nutrient solution increased. The results permitted to conclude that high foliar Mg concentration played a pivotal role to decrease sheath blight lesions expansion. 相似文献
5.
Chakkiyanickal Narayanan Biju Praveena Ravindran Mohammed Faisal Peeran Chaliyanda Nanaiah Darshana Chinnappa Kaleyanda Jashmi Ankegowda Shettahalli Koppallu Javaraiah 《Journal of Phytopathology》2017,165(5):342-353
Anthracnose incited by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is a wide spread and economically important disease of black pepper. In the present study, role of microsclerotia (MS) in the trans‐seasonal perpetuation of C. gloeosporioides was investigated. Microscopical examination of the runner shoots exhibiting necrotic lesions revealed the presence of dark, melanized structures which resembled MS. The excised necrotic regions when subjected to high humidity produced acervulus with setae. Under in vitro conditions, C. gloeosporioides produced MS predominantly on the aerial surface as inseparable congregations, enmeshed in the mycelial mats in potato dextrose broth and as individual units 7–8 days after incubation on glass slides. Sequential events in the formation of MS included germination of conidia, formation of conidial anastomosis tubes, aggregation of hyphae, and the formation of melanized microsclerotial bodies. Three types of microsclerotial germination were observed under in vitro conditions viz., sporogenic, myceliogenic and both. PCR confirmation with CgInt species‐specific primer and ITS4 resulted in 450‐bp amplification. Since, runner shoots are predominantly used as propagating material in black pepper, an approach was devised to manage anthracnose under nursery conditions by treating the 2‐ to 3‐node cuttings (nursery planting material) with carbendazim (12%)—mancozeb (63%) @ 0.1% for 30 min. The results of the study suggests a new facet in the disease cycle of black pepper anthracnose, indicating that the pathogen survives as microsclerotia in planta and could act as a potential source of inoculum. 相似文献
6.
7.
8.
Carine Charron Jacqueline Hubert Janice Minatchy Véronique Wilson Fabiola Chrysot Scholastie Gerville Renaud Ioos Céline Jeandel Michel Grisoni 《Journal of Phytopathology》2018,166(7-8):525-531
Black spot symptoms were reported on vanilla plants in Reunion Island in 2011. They have repeatedly reduced annual pod production by 10% to 30%. The disease is characterized by dark spots that appear in slight depressions on flowers, pods, leaves and stems. The spots then develop into broad clearly depressed necrotic plaques. Morphological and molecular analyses, as well as pathogenicity tests, identified the fungus Colletotrichum orchidophilum (Ascomycota) as the causal agent of the disease. Inoculation tests in controlled conditions confirmed that the two C. orchidophilum strains isolated from fruit lesions are pathogenic on the leaves and fruits of Vanilla planifolia (accessions CR0001 and CR0020). However, these strains induced symptoms only when the epidermis of leaves and fruits had been punctured by a needle. In the absence of injury, no symptom appeared. Colletotrichum arxii and Fusarium proliferatum (Ascomycota) are fungal species that are also frequently isolated from black spot lesions. However, they are not pathogenic to vanilla. This is the first report of C. orchidophilum in Reunion Island. It is also the first demonstration of C. orchidophilum's pathogenicity to an orchid. Simple preventive control measures were proposed to reduce the incidence of black spot disease in vanilla plots. 相似文献
9.
Suzianti Iskandar Vijaya Intan Sakinah Mohd Anuar Latiffah Zakaria 《Journal of Phytopathology》2015,163(1):67-71
During August 2010 and January 2011, 10 isolates of Colletotrichum were recovered from stem anthracnose lesions of Hylocereus polyrhizus in the states of Kedah and Penang, Malaysia. Based on the morphological characteristics of colony colour and appearance, and shapes of conidia as well as sequences of internal transcribed spacer regions (ITS), β‐tubulin, actin (ACT) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH), the fungus was identified as Colletotrichum truncatum. Pathogenicity test showed that C. truncatum isolates were pathogenic to the artificially inoculated H. polyrhizus stem. This is the first report of C. truncatum causing anthracnose on H. polyrhizus stems in Malaysia. 相似文献
10.
Luciano V. Cota Rodrigo V. da Costa Dagma D. Silva Carlos R. Casela Douglas F. Parreira 《Journal of Phytopathology》2012,160(11-12):680-684
The anthracnose stalk rot of corn (ASR), caused by Colletotrichum graminicola, is a major disease of this crop and occurs in most Brazilian regions where corn is grown. Despite its widespread occurrence, there are no estimates of the effect of ASR on the yield of corn under the Brazilian conditions. In this study, we evaluated the effect of ASR on corn hybrids yield. Two experiments were conducted (first crop 2007/2008 and second crop, 2009) in areas with a history of occurrence of leaf anthracnose and ASR. Five hybrids were evaluated in the first and second crops: AG1051, BRS 1001, BRS 1010, BRS 1035, P30F80 and BRS 1010, 2B710, P30F80, DKB390, BRS 1035, respectively. At harvest, we evaluated the incidence of plants with anthracnose stalk rot (IPASR), and we selected pairs of healthy and diseased plants to quantify the effect of ASR in the ear weight (EW), grain weight (GW) and the weight of a sample containing 100 kernels (W100). The IPASR was higher in the hybrid BRS 1010 (21.87 and 45.28%, first and second crops, respectively). The EW, GW and W100 were lower in diseased plants in all hybrids. The mean weight loss in the first season was EW 29.03%, GW 27.83% and W100 17.08%, and the second season was EW 27.75%, GW 25.60% and W100 16.99%. The most affected hybrids with weight loss in the first crop were AG1051 (EW 34.31%, GW 33.05%, W100 19.96%) and BRS 1035 (EW 34.74%, GW 34.65%, W100 22.31%). In the second crop, were P30F80 (EW 30.72%, GW 30.92%, W100 19.24%), DKB390 (EW 30.61%, GW 29.81%) and 2B710 (W100 19.27%). Corn yield was strongly affected by ASR. 相似文献
11.
Ueder P. Lopes Laércio Zambolim Pedro N. Souza Neto Henrique S. S. Duarte José Ivo Ribeiro Jr Antônio F. Souza Fabricio Á. Rodrigues 《Journal of Phytopathology》2014,162(2):124-128
This study documents an experiment that was undertaken in the 2006/2007, 2007/2008 and 2008/2009 growing seasons on Coffea arabica cv. ‘Catuaí Vermelho IAC 144’ that sought to evaluate the effects of various calcium silicate rates combined with the fungicide triadimenol on the incidence of coffee leaf rust. The experimental design was a randomized complete block in a split plot with five treatments (with varied calcium silicate rates and with or without triadimenol) and four replications. Each experimental unit (split plot) consisted of seven coffee plants (14 m2), which were the central five plants used for the evaluations. Calcium silicate (CS) and lime (L) were used according to the following mixtures (M): M1: 0% CS and 100% L; M2: 25% CS and 75% L; M3: 50% CS and 50% L; M4: 75% CS and 25% L; and M5: 100% CS and 0% L. The leaf Si concentration did not increase as CS rates increased in the soil. There was no reduction in the area under rust progress curve (AURPC) as the rates of CS increased in the soil. During the growing seasons 2006/2007, 2007/2008 and 2008/2009, rust incidence reached 94, 96 and 92% on plants that did not receive triadimenol, respectively, whereas the incidence did not exceed 6, 38 and 16%, respectively, for those plants that did. For yield, no interaction was observed between the calcium silicate rates and with or without triadimenol. The yield increased by 117% for plants receiving triadimenol compared with those that did not. The 3‐year experiments indicated that soil amendment with calcium silicate had no effect on either reducing coffee leaf rust incidence or increasing yield. Conversely, as expected, coffee leaf rust symptoms were dramatically reduced on plants sprayed with triadimenol, and this was accompanied by a significant gain in yield. 相似文献
12.
Paulo V. A. Azevedo de Paula Edson A. Pozza Leandro A. Santos Eugênio Chaves Matheus P. Maciel Júlio César A. Paula 《Journal of Phytopathology》2016,164(10):791-800
Brazil is the world's largest coffee producer. Brown eye spot (BES) (Cercospora coffeicola) is a major crop disease that can cause 15–30% production losses and decrease the coffee beverage quality. Although the influence of this disease on beverage quality has been studied, diagrammatic scales for assessment of the disease severity in berries are still unexplored. Thus, this study has developed and validated diagrammatic scales to assess the severity of BES. Two diagrammatic scales were designed to assess the disease in berries, which can be yellow or red depending on the cultivar. The scale of yellow berries had nine grades: grade 0: 0%; 1: 0.1–5.0%; 2: 5.1–10.0%; 3: 10.1–15.0%; 4: 15.1–20.0%; 5: 20.1–30.0%; 6: 30.1–40.0%; 7: 40.1–60.0%; and 8: higher than 60.0%, while the scale of red berries had eight grades: grade 0: 0%; 1: 0.1–2.5%; 2: 2.6–5.0%; 3: 5.1–10.0%; 4: 10.1–20.0%; 5: 20.1–30.0%; 6: 30.1–50.0%; and 7: higher than 50.0% severity. Using scales improved accuracy and precision with R2 = 0.99 and provided good repeatability and reproducibility of assessments of disease severity. Both scales can be used because the different berry colour influenced the accuracy and precision between the scales. 相似文献
13.
Jin‐Hyeuk Kwon Jinwoo Kim Okryun Choi Guen‐Hye Gang Sangjo Han Youn‐Sig Kwak 《Journal of Phytopathology》2013,161(7-8):497-502
Anthracnose disease caused by Colletotrichum horii (C. gloeosporioides), results in considerable economic damage to sweet persimmon in southern Korea yearly. This study deals with the life cycle of the pathogen in terms of seasonal fluctuations of spore dispersal and the development of disease based on field surveys, spore potential and fungal isolation. Anthracnose disease was observed first on twigs in the last week of May and reached an incidence of 1.2%. Subsequently, the disease increased rapidly and reached an incidence of 86% by the end of July. Infection of fruits started in mid‐June (2.8%) and increased gradually to 64.4% by the end of July. In severely infected orchards, 46.2% of diseased fruits were dropped. The pathogen began releasing conidia in the first week of May and continued until the end of September. The maximum release of spores was observed in mid‐July. To determine the optimal use of chemicals for control of anthracnose, the following spray programme was evaluated. Spraying two or three times resulted in 89.4 and 93% control, respectively, whereas spraying more than four times led to 100% control. In comparison, the disease rate of unsprayed trees was 89.8%. To control anthracnose effectively, it is recommended to take steps to eliminate inoculum sources in sweet persimmon orchards before spraying chemicals. 相似文献
14.
Jerome Keaton Wilson Laura Ruiz Jesse Duarte Goggy Davidowitz 《Ecology and evolution》2019,9(23):13104-13113
- Nutrition has far‐reaching effects on both the ecology and evolution of species. A substantial body of work has examined the role of host plant quality on insect herbivores, with a particular focus on specialist–generalist dynamics, the interaction of growth and other physiological attributes on fitness and tritrophic effects. Measures of plant quality usually involve one or two axes of nutritional space: typically secondary metabolites or elemental proxies (N and C) of protein and carbohydrates, respectively.
- Here, we describe the nutrient space of seven host plants of the specialist insect herbivore, Manduca sexta, using an approach that measures physiologically relevant sources of nutrition, soluble protein and digestible carbohydrates. We show that plant species differ markedly in their nutrient content, offering developing insect herbivores a range of available nutrient spaces that also depend on the age of the leaves being consumed.
- The majority of host‐plant species produce diets that are suboptimal to the herbivore, likely resulting in varying levels of compensatory feeding for M. sexta to reach target levels of protein to ensure successful growth and development. Low‐quality diets can also impact immune function leading to complex patterns of optimization of plant resources that maximizes both growth and the ability to defend from parasitoids and pathogens. This study is the first to quantify the nutrient space of a suite of host plants used by an insect herbivore using physiologically relevant measures of nutrition.
15.
Edwige J. F. Souleyre Joanna K. Bowen Adam J. Matich Sumathi Tomes Xiuyin Chen Martin B. Hunt Mindy Y. Wang Nadeesha R. Ileperuma Kate Richards Daryl D. Rowan David Chagn Ross G. Atkinson 《The Plant journal : for cell and molecular biology》2019,100(6):1148-1162
Terpenes are important compounds in plant trophic interactions. A meta‐analysis of GC‐MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)‐α‐farnesene. Four quantitative trait loci (QTLs) for α‐farnesene production in ripe fruit were identified in a segregating ‘Royal Gala’ (RG) × ‘Granny Smith’ (GS) population with one major QTL on linkage group 10 co‐locating with the MdAFS1 (α‐farnesene synthase‐1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC‐MS analysis of headspace and solvent‐extracted terpenes showing that cold‐treated GS apples produced higher levels of (E,E)‐α‐farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)‐α‐farnesene. To evaluate the role of (E,E)‐α‐farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post‐harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)‐α‐farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post‐inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)‐α‐farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit. 相似文献
16.
Trazilbo J. Paula Júnior Waldir C. Jesus Junior Belayneh Admassu Miller da Silva Lehner Bernhard Hau 《Journal of Phytopathology》2015,163(7-8):642-652
The effects of co‐inoculation of Rhizoctonia solani and Colletotrichum lindemuthianum or Uromyces appendiculatus at different inoculum levels were studied on the disease dynamics and on the growth of bean plants under greenhouse conditions. Bean seeds were sown in R. solani‐infested soil. Additional experiments in which seedlings were transplanted to infested soil were also carried out. Conidial suspensions of C. lindemuthianum or uredospores of U. appendiculatus were inoculated onto leaves at plant developmental stages V2 and V3, respectively. Interactions between root rot and the aerial diseases were observed depending on the inoculum levels and on the timing of R. solani inoculation. Anthracnose severity tended to be higher on R. solani‐infected plants. Conversely, R. solani infection significantly reduced diameter of pustules and rust severity. When seedlings were transplanted to soil infested with low levels of R. solani, root rot severity and density of R. solani in the soil were magnified at high levels of C. lindemuthianum or U. appendiculatus. In these experiments, a synergistic interaction between root rot and anthracnose was observed to affect the plant dry weight. Antagonistic effects on the plant dry weight were found for the combination root rot/rust only when seeds were sown in infested soil. 相似文献
17.
Rosalba Flores‐Flores Miguel G. Velázquez‐del Valle Renato León‐Rodriguez Hilda E. Flores‐Moctezuma Ana N. Hernández‐Lauzardo 《Journal of Phytopathology》2013,161(7-8):544-552
México is the most important producer of prickly pear (Opuntia ficus‐indica) in the world. There are several fungal diseases that can have a negative impact on their yields. In this study, there was a widespread fungal richness on cladodes spot of prickly pears from México. A total of 41 fungi isolates were obtained from cladodes spot; 11 of them were morphologically different. According to the pathogenicity test, seven isolates caused lesions on cladodes. The morphological and molecular identification evidenced the isolation of Colletotrichum gloeosporioides, Alternaria alternata, Fusarium lunatum, Curvularia lunata. All these species caused similar symptoms of circular cladodes spot. However, it is noticeable that some lesions showed perforation and detachment of affected tissues by Fusarium lunatum. To our knowledge, this is the first report of the Fusarium lunatum as phytopathogenic fungus of cladodes of prickly pear. The chitosan inhibited the mycelium growth in the seven isolates of phytopathogenic fungi. Chitosan applications diminished the disease incidence caused by C. gloeosporioies and F. lunatum in 40 and 100%, respectively. Likewise, the lesion severity index in cladodes decreased. There are no previous reports about the application of chitosan on cladodes of prickly pears for the control of phytopathogenic fungi. Therefore, this research could contribute to improve the strategies for the management of diseases in prickly pear. 相似文献
18.
R. Siede W. Dyrba T. Augustin A. Wiegand R. Ellinghaus 《Journal of Applied Entomology》2013,137(9):661-667
Rape (Brassica napus L.) is foraged intensively by honey bees (Apis mellifera). Pesticide applications during bloom are sometimes combined with foliar boron fertilizer applications. Boron has insecticidal properties, and therefore, risk to honey bees cannot be excluded. This study was conducted to test whether foliar boron fertilizers could be hazardous for bees under real field conditions. Six colonies were transferred to a rape field in bloom which was treated with boron (1 kg/ha). Six control colonies were transferred to an untreated rape field approximately 7 km away. Performance parameters of the colonies were measured. Samples of honey and beebread were collected from all colonies before and after boron fertilizer application. The contents of boron and of Al, Cd, Cr, Fe, K, Mn, Ni, P, Pb, S and Zn were measured in honey by inductively coupled plasma mass spectroscopy (ICP MS) and by ICP–atomic emission spectroscopy (ICP‐OES). No significant differences were found in honey yield (P = 0.622), number of capped brood (P = 0.089), number of uncapped brood (P = 0.123) or number of bees (P = 0.87). Application of boron fertilizer did not affect the concentration of boron in honey (P = 0.656) or beebread (P = 0.665). The concentrations of other elements confirmed the suitability of rape nectar for bee nutrition. This study suggests that the application of foliar boron fertilizers in blooming rape is not hazardous for bee colonies. 相似文献
19.
Daniel Augusto Schurt Ueder Pedro Lopes Henrique Silva Silveira Duarte Fabrício Ávila Rodrigues 《Journal of Phytopathology》2015,163(4):310-313
This study investigated the effect of potassium (K) on sheath blight (Rhizoctonia solani) development on rice plants from cultivars BR‐IRGA 409 and Labelle grown in nutrient solution containing 0, 50 and 100 mm of K. Sheath blight progress on inoculated sheaths was evaluated by measuring the relative lesion length at 48, 72, 96 and 120 h after inoculation (hai). Data were used to calculate the area under relative lesion length progress curve (AURLLPC). The foliar K concentration on leaf sheaths tissue increased by 61.48 and 116.05% to cultivars BR‐IRGA 409 and Labelle, respectively, as the K rates increased from 0 to 100 mm . A linear model best described the relationship between the AURLLPC and the K rates. The AURLLPC decreased by 29.2 and 21.3% for cultivars BR‐IRGA 409 and Labelle, respectively, as the K rates in the nutrient solution increased. It can be concluded that high K concentration on leaf sheaths tissue was important to decrease sheath blight symptoms on rice leaf sheaths. 相似文献
20.
Mathieu Jonard Alfred Fürst Arne Verstraeten Anne Thimonier Volkmar Timmermann Nenad Potočić Peter Waldner Sue Benham Karin Hansen Päivi Merilä Quentin Ponette Ana C de la Cruz Peter Roskams Manuel Nicolas Luc Croisé Morten Ingerslev Giorgio Matteucci Bruno Decinti Marco Bascietto Pasi Rautio 《Global Change Biology》2015,21(1):418-430
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered. 相似文献