首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ferulate 5‐hydroxylase (F5H) catalyses the hydroxylation of coniferyl alcohol and coniferaldehyde for the biosynthesis of syringyl (S) lignin in angiosperms. However, the coordinated effects of F5H with caffeic acid O‐methyltransferase (COMT) on the metabolic flux towards S units are largely unknown. We concomitantly regulated F5H expression in COMT‐down‐regulated transgenic switchgrass (Panicum virgatum L.) lines and studied the coordination of F5H and COMT in lignin biosynthesis. Down‐regulation of F5H in COMT‐RNAi transgenic switchgrass plants further impeded S lignin biosynthesis and, consequently, increased guaiacyl (G) units and reduced 5‐OH G units. Conversely, overexpression of F5H in COMT‐RNAi transgenic plants reduced G units and increased 5‐OH units, whereas the deficiency of S lignin biosynthesis was partially compensated or fully restored, depending on the extent of COMT down‐regulation in switchgrass. Moreover, simultaneous regulation of F5H and COMT expression had different effects on cell wall digestibility of switchgrass without biomass loss. Our results indicate that up‐regulation and down‐regulation of F5H expression, respectively, have antagonistic and synergistic effects on the reduction in S lignin resulting from COMT suppression. The coordinated effects between lignin genes should be taken into account in future studies aimed at cell wall bioengineering.  相似文献   

4.
We investigated graft transmission of high‐temperature tolerance in tomato scions to nontransgenic scions from transgenic rootstocks, where the fatty acid desaturase gene (LeFAD7) was RNA‐silenced. Tomato was transformed with a plasmid carrying an inverted repeat of LeFAD7 by Agrobacterium. Several transgenic lines showed the lower amounts of LeFAD7 RNA and unsaturated fatty acids, while nontransgenic control did not, and siRNA was detected in the transgenic lines, but not in control. These lines grew under conditions of high temperature, while nontransgenic control did not. Further, the nontransgenic plants were grafted onto the silenced transgenic plants. The scions showed less of the target gene RNA, and siRNA was detected. Under high‐temperature conditions, these grafted plants grew, while control grafted plants did not. Thus, it was shown that high‐temperature tolerance was conferred in the nontransgenic scions after grafting onto the silenced rootstocks.  相似文献   

5.
Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen‐specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible‐to‐no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand‐crossed to both male‐sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000–40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male‐sterile tobacco, and 900–2100 seeds per male‐sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI‐driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species.  相似文献   

6.
Lignin confers recalcitrance to plant biomass used as feedstocks in agro‐processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3‐dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3‐dehydroshikimate – an intermediate of the shikimate pathway – into protocatechuate. Compared to wild‐type plants, lines expressing QsuB contain higher amounts of protocatechuate, p‐coumarate, p‐coumaraldehyde and p‐coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D‐NMR spectroscopy and pyrolysis‐gas chromatography/mass spectrometry (pyro‐GC/MS) reveal an increase of p‐hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size‐exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain‐of‐function strategy for spatiotemporal reduction of lignin in plant biomass.  相似文献   

7.
8.
A family 15 carbohydrate esterase (CE15) from the white‐rot basidiomycete, Phanerochaete carnosa (PcGCE), was transformed into Arabidopsis thaliana Col‐0 and was expressed from the constitutive cauliflower mosaic virus 35S promoter. Like other CE15 enzymes, PcGCE hydrolyzed methyl‐4‐O‐methyl‐d ‐glucopyranuronate and could target ester linkages that contribute to lignin–carbohydrate complexes that form in plant cell walls. Three independently transformed Arabidopsis lines were evaluated in terms of nine morphometric parameters, total sugar and lignin composition, cell wall anatomy, enzymatic saccharification and xylan extractability. The transgenic lines consistently displayed a leaf‐yellowing phenotype, as well as reduced glucose and xylose content by as much as 30% and 35%, respectively. Histological analysis revealed 50% reduction in cell wall thickness in the interfascicular fibres of transgenic plants, and FT‐IR microspectroscopy of interfascicular fibre walls indicated reduction in lignin cross‐linking in plants overexpressing PcGCE. Notably, these characteristics could be correlated with improved xylose recovery in transgenic plants, up to 15%. The current analysis represents the first example whereby a fungal glucuronoyl esterase is expressed in Arabidopsis and shows that the promotion of glucuronoyl esterase activity in plants can alter the extent of intermolecular cross‐linking within plant cell walls.  相似文献   

9.
Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.  相似文献   

10.
11.
The bioconversion of carbohydrates in the herbaceous bioenergy crop, switchgrass (Panicum virgatum L.), is limited by the associated lignins in the biomass. The cinnamyl alcohol dehydrogenase (CAD) gene encodes a key enzyme which catalyzes the last step of lignin monomer biosynthesis. Transgenic switchgrass plants were produced with a CAD RNAi gene construct under the control of the maize ubiquitin promoter. The transgenic lines showed reduced CAD expression levels, reduced enzyme activities, reduced lignin content, and altered lignin composition. The modification of lignin biosynthesis resulted in improved sugar release and forage digestibility. Significant increases of saccharification efficiency were obtained in most of the transgenic lines with or without acid pretreatment. A negative correlation between lignin content and sugar release was found among these transgenic switchgrass lines. The transgenic materials have the potential to allow for improved efficiency of cellulosic ethanol production.  相似文献   

12.
Sugarcane is a prime bioethanol feedstock. Currently, sugarcane ethanol is produced through fermentation of the sucrose, which can easily be extracted from stem internodes. Processes for production of biofuels from the abundant lignocellulosic sugarcane residues will boost the ethanol output from sugarcane per land area. However, unlocking the vast amount of chemical energy stored in plant cell walls remains expensive primarily because of the intrinsic recalcitrance of lignocellulosic biomass. We report here the successful reduction in lignification in sugarcane by RNA interference, despite the complex and highly polyploid genome of this interspecific hybrid. Down‐regulation of the sugarcane caffeic acid O‐methyltransferase (COMT) gene by 67% to 97% reduced the lignin content by 3.9% to 13.7%, respectively. The syringyl/guaiacyl ratio in the lignin was reduced from 1.47 in the wild type to values ranging between 1.27 and 0.79. The yields of directly fermentable glucose from lignocellulosic biomass increased up to 29% without pretreatment. After dilute acid pretreatment, the fermentable glucose yield increased up to 34%. These observations demonstrate that a moderate reduction in lignin (3.9% to 8.4%) can reduce the recalcitrance of sugarcane biomass without compromising plant performance under controlled environmental conditions.  相似文献   

13.
Trehalose Is a nonreduclng dlsaccharlde of glucose that functions as a protectant In the stabilization of blologlcal structures and enhances stress tolerance to abiotic stresses in organisms. We report here the expression of a Grlfola frondosa trehalose synthase (TSase) gene for Improving drought tolerance In sugarcane (Saccharum offlclnarum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and transferred Into sugarcane by Agrobacterium tumefaciens EHA105. The transgenlc plants accumulated high levels of trehalose, up to 8.805-12.863 mg/g fresh weight, whereas It was present at undetectable level in nontransgenlc plants. It has been reported that transgenlc plants transformed with Escherlchla coil TPS (trehalose-6-phosphatesynthase) and/or TPP (trehalose-6-phosphate phosphatase) are severely stunted and have root morphologlc alterations. Interestingly, our transgenlc sugarcane plants had no obvious morphological changes and no growth Inhibition in the field. Trehalose accumulation in 35S-35S:TSase plants resulted In In- creased drought tolerance, as shown by the drought and the drought physiological Indexes, such as the rate of bound water/free water, plasma membrane permeability, malondlaldehyde content, chlorophyll a and b contents, and activity of SOD and POD of the excised leaves. These results suggest that transgenlc plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought.  相似文献   

14.
15.
A series of transgenic lines of alfalfa (Medicago sativa) were generated in which either one of the two potentially terminal enzymes of the monolignol pathway, cinnamoyl CoA reductase (CCR) or cinnamyl alcohol dehydrogenase (CAD) was down-regulated by expression of antisense transgenes. Levels of CCR enzymatic activity were reduced to between 10% to 65% of the control level, and levels of CAD activity were similarly reduced to between 5% to 40% of the control. Biomass yields were reduced in the most strongly down-regulated lines for both transgenes, but many of the lines exhibited reduced lignin levels but normal biomass and flowering time. In vitro dry matter digestibility was increased for most transgenic lines compared to controls. Saccharification efficiency was determined by measuring the release of sugars from cell walls directly, or after sulfuric acid pre-treatment and subsequent digestion with a mixture of cellulase and cellobiase. Several CCR down-regulated lines had significantly enhanced saccharification efficiency with both pre-treated and untreated tissues, whereas CAD down-regulation had less impact on sugar release when compared to that from CCR lines with similar lignin contents. One CCR line with a 50–60% improvement in saccharification efficiency exhibited normal biomass production, indicating the potential for producing high yielding, improved feedstocks for bioethanol production through genetic modification of the monolignol pathway.  相似文献   

16.
Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4‐KD, miRNA156‐OE, MYB4‐OE, COMT‐KD and FPGS‐KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second‐ versus the first‐year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second‐year growth of transgenics targeted for wall modification, GAUT4‐KD, MYB4‐OE, COMT‐KD and FPGS‐KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next‐generation bio‐feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.  相似文献   

17.

Background

The genetic modification of plant cell walls has been considered to reduce lignocellulose recalcitrance in bioenergy crops. As a result, it is important to develop a precise and rapid assay for the major wall polymer features that affect biomass saccharification in a large population of transgenic plants. In this study, we collected a total of 246 transgenic rice plants that, respectively, over-expressed and RNAi silenced 12 genes of the OsGH9 and OsGH10 family that are closely associated with cellulose and hemicellulose modification. We examined the wall polymer features and biomass saccharification among 246 transgenic plants and one wild-type plant. The samples presented a normal distribution applicable for statistical analysis and NIRS modeling.

Results

Among the 246 transgenic rice plants, we determined largely varied wall polymer features and the biomass enzymatic saccharification after alkali pretreatment in rice straws, particularly for the fermentable hexoses, ranging from 52.8 to 95.9%. Correlation analysis indicated that crystalline cellulose and lignin levels negatively affected the hexose and total sugar yields released from pretreatment and enzymatic hydrolysis in the transgenic rice plants, whereas the arabinose levels and arabinose substitution degree (reverse xylose/arabinose ratio) exhibited positive impacts on the hexose and total sugars yields. Notably, near-infrared spectroscopy (NIRS) was applied to obtain ten equations for predicting biomass enzymatic saccharification and seven equations for distinguishing major wall polymer features. Most of the equations exhibited high R 2/R 2 cv/R 2 ev and RPD values for a perfect prediction capacity.

Conclusions

Due to large generated populations of transgenic rice lines, this study has not only examined the key wall polymer features that distinctively affect biomass enzymatic saccharification in rice but has also established optimal NIRS models for a rapid and precise screening of major wall polymer features and lignocellulose saccharification in biomass samples. Importantly, this study has briefly explored the potential roles of a total of 12 OsGH9 and OsGH10 genes in cellulose and hemicellulose modification and cell wall remodeling in transgenic rice lines. Hence, it provides a strategy for genetic modification of plant cell walls by expressing the desired OsGH9 and OsGH10 genes that could greatly improve biomass enzymatic digestibility in rice.
  相似文献   

18.
19.
Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin‐degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the β‐aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolic metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized β‐aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号