首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat seedling grown with their shoot bottom exposed to red light (400 μmol m−2 s−1) either with constant illumination or light-dark cycles did not accumulate chlorophyll. This near-etiolation response was manifested by a critical threshold intensity of red light and did not need continuous illumination. The inhibition of the greening process resulted from reduced synthesis of glutamate-1-semialdehyde and consequent reduction in tetrapyrrole precursor 5-aminolevulinic acid. Red light perceived by the shoot bottom down regulated the protein and/or gene expression of enzymes involved in the biosynthesis of tetrapyrroles. The contents of endogenous cytokinins, i.e., isopentenyl-adenosine and dihydrozeatinriboside, were reduced in seedlings grown in red light having their shoot bottom exposed. Application of exogenous cytokinin and its analogue to roots of seedlings grown in red light reversed the down regulation of the greening process. The reversal of red-light-induced near-etiolation morphogenesis by far-red (200 μmol m−2 s−1) or blue (25 μmol m−2 s−1) light suggests that it could be a very high red-irradiance response of phytochrome, in the meristematic layers of the shoot bottom, that works in concert with blue light receptor(s). This work was supported by a competitive grant from the Department of Science and Technology, Govt. of India (DST/SP/SO/A-49/95) to BCT. Suchi Sood Varsha Gupta: Equal contributors  相似文献   

2.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

3.
We have isolated and sequenced a cDNA clone encoding the apoprotein of a potato phytochrome. Based on the deduced amino acid sequence, which shows 78% amino acid identity to the Arabidopsis phyA and 50% identity to the Arabidopsis phyB open reading frame, we have classified this cDNA clone as potato phyA phytochrome. The amino acid immediately preceding cysteine 323, which is the homologue of oat cystein 321, to which the chromophore has been shown to be attached, is a tyrosine residue. This contrasts with six other type A phytochrome sequences from both monocots and dicots that encode serine in this position. As already observed in three other cDNAs isolated from dicot species, the potato phyA clone encodes a short open reading frame (13 amino acids) preceding the phyA open reading frame (1123 amino acids), supporting the idea that this type of leader sequence might be involved in the regulated expression of the phytochrome apoprotein. Southern blot analysis revealed a single phyA gene as well as other related phytochrome sequences in the potato genome. phyA mRNA levels varied in different organs and were modulated by white light; in seedlings and sprouts, highest levels of mRNA were detected in the etiolated stage. Upon illumination with white light, mRNA levels decreased to the amount found in leaves of re-etiolated plants. Lowest expression was observed in leaves of plants grown in the light, in tubers irrespective of light treatment, and in roots of plants grown in the dark. In roots of plants grown in the light, elevated levels of phyA mRNA were detected. Using a monoclonal antibody generated against pea phytochrome as an immunochemical probe, the protein was only detectable in protein extracts from etiolated seedlings and sprouts.  相似文献   

4.
In order to test the interaction of different phytochromes and blue-light receptors, etiolated seedlings of wild-type Arabidopsis thaliana (L.) Heynh., a phytochrome (phy) B-overexpressor line (ABO), and the photoreceptor mutants phyA-201, phyB-5, hy4-2.23n, fha-1, phyA-201/phyB-5, and phyA-201/hy4-2.23n were exposed to red and far-red light pulses after various preirradiations. The responsiveness to the inductive red pulses is primarily mediated by phyB which is rather stable in its far-red-absorbing form as demonstrated by a very slow loss of reversibility. Without preirradiation the red pulses had an impact on hypocotyl elongation only in PHYA mutants but not in the wild type. This indicates a suppression of phyB function by the presence of phyA. Preirradiation with either far-red or blue light resulted in an inhibition of hypocotyl elongation by red pulses in the wild type. Responsiveness amplification by far-red light is mediated by phyA and disappears slowly in the dark. The extent of responsiveness amplification by blue light was identical in the wild type and in the absence of phyA, or the cryptochromes cryl (hy4-2.23n) or cry2 (fha-1). Therefore, we conclude that stimulation of phyB by blue light preirradiation is either mediated by an additional still-unidentified blue-light-absorbing pigment or that phyA, cry1 and cry2 substitute for each other completely. Both blue and red preirradiation established responsiveness to red pulses in phyA-201/phyB-5 double mutants. These results demonstrate that inhibition of hypocotyl elongation by red pulses is not only mediated by phyB but also by a phytochrome(s) other than phyA and phyB. Received: 21 July 1998 / Accepted: 7 December 1998  相似文献   

5.
In this study, metabolite profiling was demonstrated as a usefultool to plot a specific metabolic pathway, which is regulatedby phytochrome A (phyA). Etiolated Arabidopsis wild-type (WT)and phyA mutant seedlings were irradiated with either far-redlight (FR) or white light (W). Primary metabolites of the irradiatedseedlings were profiled by gas chromatography time-of-flightmass spectrometry (GC/TOF-MS) to obtain new insights on phyA-regulatedmetabolic pathways. Comparison of metabolite profiles in phyAand WT seedlings grown under FR revealed a number of metabolitesthat contribute to the differences between phyA and the WT.Several metabolites, including some amino acids, organic acids,and major sugars, as well as putrescine, were found in smalleramounts in WT compared with the content in phyA seedlings grownunder FR. There were also significant differences between metaboliteprofiles of WT and phyA seedlings during de-etiolation underW. The polyamine biosynthetic pathway was investigated further,because putrescine, one of the polyamines existing in a widevariety of living organisms, was found to be present in loweramounts in WT than in phyA under both light conditions. Theexpression levels of polyamine biosynthesis-related genes wereinvestigated by quantitative real-time RT-PCR. The gene expressionprofiles revealed that the arginine decarboxylase 2 (ADC2) genewas transcribed less in the WT than in phyA seedlings underboth light conditions. This finding suggests that ADC2 is negativelyregulated by phyA during photomorphogenesis. In addition, S-adenosylmethioninedecarboxylase 2 and 4 (SAMDC2 and SAMDC4) were found to be regulatedby phyA but in a different manner from the regulation of ADC2. Key words: Arabidopsis thaliana, gene expression profiling, metabolite profiling, phytochrome A, polyamine biosynthesis Received 19 October 2007; Revised 17 January 2008 Accepted 18 January 2008  相似文献   

6.
The effect of light on the activity of phospholipase D (PLD) in oat (Avena sativa L.) seedlings and the dependence of this enzyme activity on the regime of their illumination were studied. The PLD activity in etiolated seedlings was 1.5–2.0-fold higher than in green plants. The illumination of etiolated seedlings with white light resulted in a decrease in PLD activity to its level in the seedlings grown under light. In contrast, the transfer of green seedlings to darkness enhanced the activity of the enzyme up to its level in etiolated seedlings. The illumination of etiolated seedlings with red light inhibited the PLD as well. It was shown that this photoeffect decreased with seedling aging and correlated with a phytochrome content in plants. Far-red light reversed the effect of red light. The involvement of phytochrome in the control of the PLD activity is discussed.  相似文献   

7.
A transgenic wheat line over‐expressing an oat phytochrome A gene under the control of the constitutive maize ubiquitin promoter was generated using a biolistic particle delivery system from immature wheat embryos. The resulting line showed increased levels of total phytochrome A protein in both dark‐grown and light‐grown plants. When grown under continuous far‐red light, seedlings of this line showed additional inhibition of the coleoptile extension in comparison with wild‐type seedlings. Unlike the response of wild‐type seedlings to continuous far‐red, this additional inhibition was dependent on fluence rate and was not observed under half‐hourly pulses of far‐red delivering the same total fluence as the continuous irradiation treatment. These observations suggest that increase in phytochrome A levels in wheat leads to the establishment of a far‐red high irradiation reaction in this monocotyledonous plant. Exposure to continuous red light caused a similar inhibition of coleoptile extension in both the wild types and the transgenic seedlings. When wild‐type seedlings were grown under continuous far‐red, their coleoptiles remained completely colourless and first leaves remained tightly rolled. In contrast, transgenic seedlings grown in the same conditions produced significant levels of anthocyanins in their coleoptiles and their first leaves became unrolled. Taken together, our data suggest that the increased levels of phytochrome A in wheat can change the type of response of some developmental processes to light signals, leading to the generation of a high irradiance reaction which is otherwise absent in the wild types under the conditions used.  相似文献   

8.
9.
A. Wildermann  H. Drumm  E. Schäfer  H. Mohr 《Planta》1978,141(2):211-216
After sowing, mustard (Sinapis alba L.) seedlings were grown for 48 h in white light (25°C). These fully de-etiolated, green seedlings were used as experimental material between 48 and 72 (84) h after sowing. The question researched was to what extent control by light of hypocotyl elongation is due to phytochrome in these seedlings. It was found that the light effect on hypocotyl growth is very probably exerted through phytochrome only. In particular, we found no indication for the involvement of a specific blue light photoreceptor pigment.Abbreviations HIR high irradiance reaction - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pot total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Ptot] - red red light - fr far-red light - wl white light - bl blue light - di dichromatic irradiation - l hypocotyl length  相似文献   

10.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   

11.
Levels of ATP and ADP were studied in primary leaves of barley (Hordeum vulgare L. cv. Viner) seedlings grown under blue (BL) or red light (RL) of various irradiances. In mature leaf segments, BL stimulated a greater accumulation of adenylates than RL. Transfer of barley seedlings from RL to BL for 48 h caused about a twofold increase in the content of adenylates, probably due to de-novo synthesis of adenine nucleotides. Weak BL was found to stimulate an increase in the adenylate content and a higher irradiance enhanced the stimulatory effect. The adenylate content increased markedly from the base towards the tip of barley leaves grown under BL but not in those grown under RL. However, the adenylate content was higher in the basalmost segment of barley leaves grown under RL, indicating that the action of RL on adenylate content proceeded more rapidly than that of BL. The same conclusion could be drawn from the results of experiments with de-etiolated leaves. A linear relationship was established between the maximum rate of CO2 fixation and the ATP or ADP content in mature segments of primary barley leaves. The possible involvement of two photoreceptors, phytochrome and cryptochrome, in the long-term light regulation of the total content of adenylates in primary barley leaves is discussed.Abbreviations BL blue light - Chl chlorophyll - RL red light  相似文献   

12.
Wheat seedlings grown with roots exposed to constant red light (300-500 micromoles m-2 s-1) did not accumulate chlorophyll in the leaves. In contrast, seedlings grown with their roots shielded from light accumulated chlorophylls. Chlorophyll biosynthesis could be induced in red-light-grown chlorophyll-deficient yellow plants by either reducing the red-light intensity at the root surface to 100 micromoles m-1 s-1 or supplementing with 6% blue light. The inhibition of chlorophyll biosynthesis was due to impairment of the Mg-chelatase enzyme working at the origin of the Mg-tetrapyrrole pathway. The root-perceived photomorphogenic inhibition of shoot greening demonstrates root-shoot interaction in the greening process.  相似文献   

13.
Phytochromes are red‐ and far red light photoreceptors in higher plants. Rice (Oryza sativa L.) has three phytochromes (phyA, phyB and phyC), which play distinct as well as cooperative roles in light perception. To gain a better understanding of individual phytochrome functions in rice, expression patterns of three phytochrome genes were characterized using promoter‐GUS fusion constructs. The phytochrome genes PHYA and PHYB showed distinct patterns of tissue‐ and developmental stage‐specific expression in rice. The PHYA promoter‐GUS was expressed in all leaf tissues in etiolated seedlings, while its expression was restricted to vascular bundles in expanded leaves of light‐grown seedlings. These observations suggest that light represses the expression of the PHYA gene in all cells except vascular bundle cells in rice seedlings. Red light was effective, but far red light was ineffective in gene repression, and red light‐induced repression was not observed in phyB mutants. These results indicate that phyB is involved in light‐dependent and tissue‐specific repression of the PHYA gene in rice.  相似文献   

14.
15.
Due to the preeminence of reductionist approaches, understanding of plant responses to combined stresses is limited. We speculated that light‐quality signals of neighbouring vegetation might increase susceptibility to heat shocks because shade reduces tissue temperature and hence the likeness of heat shocks. In contrast, plants of Arabidopsis thaliana grown under low‐red/far‐red ratios typical of shade were less damaged by heat stress than plants grown under simulated sunlight. Neighbour signals reduce the activity of phytochrome B (phyB), increasing the abundance of PHYTOCHROME‐INTERACTING FACTORS (PIFs). The phyB mutant showed high tolerance to heat stress even under simulated sunlight, and a pif multiple mutant showed low tolerance under simulated shade. phyB and red/far‐red ratio had no effects on seedlings acclimated with nonstressful warm temperatures before the heat shock. The phyB mutant showed reduced expression of several fatty acid desaturase (FAD) genes and less proportion of fully unsaturated fatty acids and electrolyte leakage of membranes exposed to heat shocks. Red‐light‐activated phyB also reduced thermotolerance of dark‐grown seedlings but not via changes in FADs expression and membrane stability. We propose that the reduced photosynthetic capacity linked to thermotolerant membranes would be less costly under shade, where the light input limits photosynthesis.  相似文献   

16.
The effects of blue light (B) on stem extension-growth were compared in light-grown seedlings, of tobacco overexpressing Avena phytochrome A and its isogenic wild type (WT). Under natural radiation, lowering the levels of B reaching the whole shoot promoted stem extension growth in WT but not in transgenic seedlings. Under controlled conditions, the seedlings were exposed to white light (WL) or WL minus B, each one provided at two different irradiances. In WT seedlings stem extension growth was promoted by lowering B at both irradiance levels. In transgenic seedlings a reduction of B was promotive only at low irradiance levels. The seedlings were also grown under WL, WL minus B, WL minus red light (R) and far-red light (FR) or WL minus R, FR and B. In the WT, lowering B promoted stem extension growth irrespective of R+FR levels. In the transgenics, B was effective only at very low levels of R+FR (i.e. at low phytochrome cycling rates). Lowering the Pfr levels at the end of the day promoted extension growth in wild type and transgenic seedlings. Responses to B were not observed in transgenic seedlings having low Pfr levels at the end of the day. The results suggest that the overexpressed phytochrome A acts mainly via irradiance-dependent reactions. When these reactions are highly expressed, B responses are not observed.  相似文献   

17.
18.
Dual effect of phytochrome A on hypocotyl growth under continuous red light   总被引:5,自引:1,他引:4  
The role of phytochrome A in the control of hypocotyl growth under continuous red light (Rc) was investigated using phyA and phyB mutants of Arabidopsis thaliana, which lack phytochrome A (phyA) or phytochrome B (phyB), respectively, and transgenic seedlings of Nicotiana tabacum overexpressing Avena phyA, compared to the corresponding wild type (WT). In WT seedlings of A. thaliana, hypocotyl growth inhibition showed a biphasic response to the fluence rate of Rc, with a brake at 10?2μmol m?2 s?1. At equal total fluence rate, hourly pulses of red light caused slightly more inhibition than Rc. The response to very low fluences of continuous or pulsed red light was absent in the phyA and phyA phyB mutants and present in the phyB mutant. The second part of the response was steeper in the phyA mutant than in the WT but was absent in the phyB mutant. In WT tobacco the response to Rc was biphasic. Overexpression of Avena phyA enhanced the response only at very low fluence rates of Rc (< 10?2μmol m?2 s?1). In both species, the effect of hourly pulses of far-red light was similar to the maximum inhibition observed in the first phase of the response to Rc. Using reciprocity failure (i.e. higher inhibition under continuous than pulsed light) as the operational criterion, a ‘true’ high-irradiance reaction occurred under continuous far-red light but not under Rc or red plus far-red light mixtures. Native and overexpressed phyA are proposed to mediate very low fluence responses under Rc. In WT A. thaliana, this effect is counteracted by a negative action of phyA on phyB-mediated low-fluence responses.  相似文献   

19.
Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS‐induced growth promotion facilitates rapid escape of the roots from non‐natural light. Meanwhile, long‐term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far‐red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot‐derived ABA signals induce a peroxidase‐mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark‐grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot‐to‐root ABA signaling links shoot phyB‐mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA‐mediated shoot‐to‐root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants.  相似文献   

20.
We isolated a new pea mutant that was selected on the basis of pale color and elongated internodes in a screen under white light. The mutant was designated pcd1 for phytochrome chromophore deficient. Light-grown pcd1 plants have yellow-green foliage with a reduced chlorophyll (Chl) content and an abnormally high Chl a/Chl b ratio. Etiolated pcd1 seedlings are developmentally insensitive to far-red light, show a reduced response to red light, and have no spectrophotometrically detectable phytochrome. The phytochrome A apoprotein is present at the wild-type level in etiolated pcd1 seedlings but is not depleted by red light treatment. Crude phytochrome preparations from etiolated pcd1 tissue also lack spectral activity but can be assembled with phycocyanobilin, an analog of the endogenous phytochrome chromophore phytochromobilin, to yield a difference spectrum characteristic of an apophytochrome-phycocyanobilin adduct. These results indicate that the pcd1-conferred phenotype results from a deficiency in phytochrome chromophore synthesis. Furthermore, etioplast preparations from pcd1 seedlings can metabolize biliverdin (BV) IX[alpha] but not heme to phytochromobilin, indicating that pcd1 plants are severely impaired in their ability to convert heme to BV IX[alpha]. This provides clear evidence that the conversion of heme to BV IX[alpha] is an enzymatic process in higher plants and that it is required for synthesis of the phytochrome chromophore and hence for normal photomorphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号