首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 2007, a new disease in broccoli (Brassica oleracea var. italica Plenck) has been observed in the São Paulo state, Brazil. The characteristic symptoms of the disease are plant stunting, inflorescence malformation, reddening of the leaves and phloem necrosis. Nested polymerase chain reaction with P1/Tint and F2n/R2 primer pairs revealed the presence of phytoplasmas in diseased broccoli plants. Restriction fragment length polymorphism and phylogenetic analysis of the 16S rDNA gene showed that phytoplasmas belonging to 16SrI, III and XIII groups were associated with the plants. To the best of our knowledge, this is the first report of phytoplasmas in this Brassica species in Brazil, as well the first time phytoplasmas of 16SrIII and XIII groups have been associated with broccoli plants.  相似文献   

2.
Sunshine trees (Senna surattensis) exhibiting unusual stem fasciation symptoms were observed in Yunnan, China. Morphological abnormalities of the affected plants included enlargement and flattening of stems and excessive proliferation of shoots. An electron microscopic investigation revealed presence of single membrane bound mycoplasma‐like bodies in sieve elements of symptomatic plants. With DNA templates extracted from diseased plants and phytoplasma universal primers P1/P7 and P1A/R16S‐SR, nested polymerase chain reactions produced amplicons of 1.5 kb. Subsequent restriction fragment polymorphism and nucleotide sequence analyses of the amplicons indicated that the diseased plants were infected by distinct phytoplasmas affiliated with two phylogenetically distant taxa classified in two 16Sr groups (16SrXII and 16SrV). This is the first report that sunshine tree is a natural host of two evolutionarily divergent phytoplasmas and the first report that a ‘Candidatus Phytoplasma australiense’‐related strain is present in China. The findings signal a significant expansion of both geographical distribution and host range of 16SrXII and 16SrV phytoplasmas.  相似文献   

3.
Asparagus officinalis plants with severe fasciation of some spears were observed in southern Bohemia between 1998 and 2007. Nucleic acids extracted from these and asymptomatic plants were assayed with nested polymerase chain reaction (PCR) using the phytoplasma‐specific universal ribosomal primers P1/P7 and R16F2n/R2. The restriction profiles obtained from digestion of the PCR products with five endonucleases (AluI, HhaI, KpnI, MseI and RsaI) were identical in all phytoplasmas infecting asparagus in the Czech Republic and indistinguishable from those of phytoplasmas in the aster yellows group (subgroup 16SrI‐B). Sequence analysis of 1754 bp of the ribosomal operon indicated that the closest related phytoplasmas were those associated with epilobium phyllody and onion yellows. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in A. officinalis.  相似文献   

4.
Potato plants with symptoms suggestive of potato purple top disease (PPTD) occurred in the central, western and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7 followed by primer pairs R16F2n/R16R2 and fU5/rU3 for phytoplasma detection. Using primer pairs R16F2n/R16R2 and fU5/rU3 in nested PCR, the expected fragments were amplified from 53% of symptomatic potatoes. Restriction fragment length polymorphism (RFLP) analysis using AluI, CfoI, EcoRI, KpnI, HindIII, MseI, RsaI and TaqI restriction enzymes confirmed that different phytoplasma isolates caused PPTD in several Iranian potato‐growing areas. Sequences analysis of partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma solani’, ‘Ca. Phytoplasma astris’ and ‘Ca. Phytoplasma trifolii’ are prevalent in potato plants showing PPTD symptoms in the production areas of central, western and north‐western regions of Iran, although ‘Ca. Phytoplasma solani’ is more prevalent than other phytoplasmas. This is the first report of phytoplasmas related to ‘Ca. Phytoplasma astris’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ causing PPTD in Iran.  相似文献   

5.
Shrubs of niger seed with phyllody and internode elongation symptoms suggestive of phytoplasma infections occurred in the central regions of Iran. Phytoplasma was detected by polymerase chain reaction (PCR) and nested PCR amplifications using phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2. Using aster yellows group–specific primer pair rp(I)F1A/rp(I)R1A, a fragment of 1212 bp of the rp genes was amplified from DNA samples of infected plants. Random fragment length polymorphism (RFLP) analyses of R16F2n/R16R2‐amplified products using the CfoI restriction enzyme confirmed that Iranian niger seed phyllody phytoplasma is associated with aster yellows group phytoplasmas. Sequence analyses of the partial rp genes fragment indicated that the Iranian niger seed phyllody phytoplasma, which was collected from central regions of Iran, is related to ‘Candidatus Phytoplasma asteris’. This is the first report of a phytoplasma infecting the niger seed plant.  相似文献   

6.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

7.
Recently, peach trees showing leaf rolling, little leaf, rosetting, yellowing, bronzing of foliage and tattered and shot‐holed leaves symptoms were observed in peach growing areas in the central and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR using phytoplasma universal primer pairs P1/Tint, R16F2/R2, PA2F/R and NPA2F/R were employed to detect phytoplasmas. The nested PCR assays detected phytoplasma infections in 51% of symptomatic peach trees in the major peach production areas in East Azerbaijan, Isfahan, ChaharMahal‐O‐Bakhtiari and Tehran provinces. Restriction fragment length polymorphism (RFLP) analyses of 485 bp fragments amplified using primer pair NPA2F/R in nested PCR revealed that the phytoplasmas associated with infected peaches were genetically different and they were distinct from phytoplasmas that have been associated with peach and almond witches’‐broom diseases in the south of Iran. Sequence analyses of partial 16S rDNA and 16S–23S rDNA intergenic spacer regions demonstrated that ‘Candidatus Phytoplasma aurantifolia’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ are prevalent in peach growing areas in the central and north‐western regions of Iran.  相似文献   

8.
Long plantains (Plantago lanceolata L.) with symptoms resembling those associated with phytoplasma infection were observed repeatedly during the period 2000–2008 in southern Bohemia (Czech Republic). The symptoms of the plants were leaf yellowing, stunted growth, flower phyllody and lack of seed production. Transmission electron microscopy showed phytoplasmas in the sieve cells of affected plants but not in healthy ones. Association of phytoplasmas with the disease was confirmed by polymerase chain reaction using phytoplasma-specific universal ribosomal primers R16F2n/R16R2. An amplification product of the expected size (1.2 kb) was observed in all samples of the symptomatic long plantains. The restriction profiles obtained from digestion of the PCR products with three endonucleases (AluI, HhaI, MseI) showed that the phytoplasmas infecting long plantains in the Czech Republic were indistinguishable from those belonging to the aster yellows group (subgroup 16SrI-B). Sequence analysis of 1748 bp of the ribosomal operon indicated that the closest related phytoplasma was that associated with ‘Rehmannia glutinosa var. purpurea’, originating also in Bohemia. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in plants of P. lanceolata.  相似文献   

9.
Samples of sugarcane leaves were collected from different commercial fields and breeding stations in Egypt. Aetiology of sugarcane phytoplasma disease was investigated using nested PCR. Phytoplasma‐specific primers (P1/P7 and R16F2n/R16R2) were used to amplify a fragment of the 16S rRNA gene. Sequencing and restriction fragment length polymorphism analyses revealed that the tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group. Phylogenetic analyses of 60 screened accessions of 16S ribosomal RNA gene sequences of Candidatus phytoplasmas comprising those collected from Egypt (this study) and those extracted from GenBank showed that they split into two distinct clusters. All the phytoplasmas form a stable phylogenetic subcluster, as judged by branch length and bootstrap values of 100% in the 16S group cluster. Results of phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. Conversely, based on the analysis of the 16S‐23S region, examined isolates segregated into four different clusters suggesting a notable heterogeneity between them. These results are the first record of the presence of phytoplasma in association with sugarcane yellow leaf in Egypt.  相似文献   

10.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

11.
Potato plants showing symptoms suggestive of potato witches’‐broom disease including witches’‐broom, little leaf, stunting, yellowing and swollen shoots formation in tubers were observed in the central Iran. For phytoplasma detection, Polymerase Chain Reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7, followed by primer pair R16F2n/R16R2. Random fragment length polymorphism analysis of potato phytoplasma isolates collected from different production areas using the CfoI restriction enzyme indicated that potato witches’‐broom phytoplasma isolate (PoWB) is genetically different from phytoplasmas associated with potato purple top disease in Iran. Sequence analysis of the partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma trifolii’ is associated with potato witches’‐broom disease in Iran. This is the first report of potato witches’‐broom disease in Iran.  相似文献   

12.
In 2012, yellowing of camellias was observed in Tai'an in Shandong province, China. Transmission electron microscopy (TEM) revealed phytoplasma in the phloem sieve tube elements of symptomatic plants. A specific fragment of phytoplasma 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the universal phytoplasma primers P1/P7 followed by R16F2n/R16R2. Sequence and restriction fragment length polymorphism (RFLP) analyses allowed us to classify the detected phytoplasma into the elm yellows (EY) group (16SrV), subgroup 16SrV‐B. Sequence analyses of the ribosomal protein (rp) gene confirmed a close relationship with phytoplasmas belonging to the rpV‐C subgroup. Thus, the phytoplasma associated with yellows disease in camellia, designated as ‘CY’, is a member of the 16SrV‐B subgroup. This is the first report of phytoplasma associated with camellia.  相似文献   

13.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

14.
Scentless chamomile (Matricaria perforata Mérat) plants were commonly found infected with a yellows-type disease caused by phytoplasma in several fields in Alberta, Canada. Typical phytoplasmas were detected in the phloem cells in ultrathin sections from leaf, stem, root and flower petiole tissues examined by electron microscopy. Application of 4′6-diamidino-2-phenylindole- 2HCl (DAPI) staining techniques confirmed the presence of the phytoplasma in these tissues. These observations were supported by polymerase chain reaction (PCR) assays, using two primer pairs, P1/P6 and R16(1)F1/R1, derived from phytoplasma rDNA sequences. Aster yellows and potato witches′-broom (PWB) DNA phytoplasma samples served as positive controls and were used to study group relatedness. In a direct PCR assay, DNA amplification with universal primer pair P1/P6 gave the expected PCR products of 1.5 kb. Based on a nested-PCR assay using the latter PCR products, as templates, and a specific primer pair R16(1)F1/R1 designed on the basis of AY phytoplasma rDNA sequences, a PCR product of 1.1 kb was obtained from each phytoplasma-infected chamomile and AY samples but not from PWB phytoplasma and healthy chamomile controls. DNA amplification with specific primer pair R16(1)F1/R1 and restriction fragment length polymorphism indicated the presence of AY phytoplasma in the infected scentless chamomile sample.  相似文献   

15.
A survey was made to determine the incidence of phytoplasmas in 39 sweet and sour cherry, peach, nectarine, apricot and plum commercial and experimental orchards in seven growing regions of Poland. Nested polymerase chain reaction (PCR) using the phytoplasma‐universal primer pairs P1/P7 followed by R16F2n/R16R2 showed the presence of phytoplasmas in 29 of 435 tested stone fruit trees. The random fragment length polymorphism (RFLP) patterns obtained after digestion of the nested PCR products separately with RsaI, AluI and SspI endonucleases indicated that selected Prunus spp. trees were infected by phytoplasmas belonging to three different subgroups of the apple proliferation group (16SrX‐A, ‐B, ‐C). Nucleotide sequence analysis of 16S rDNA fragment amplified with primers R16F2n/R16R2 confirmed the PCR/Restriction Fragment Length Polymorphism (RFLP) results and revealed that phytoplasma infecting sweet cherry cv. Regina (Reg), sour cherry cv. Sokowka (Sok), apricots cv. Early Orange (EO) and AI/5, Japanese plum cv. Ozark Premier (OzPr) and peach cv. Redhaven (RedH) was closely related to isolate European stone fruit yellows‐G1 of the ‘Candidatus Phytoplasma prunorum’ (16SrX‐B). Sequence and phylogenetic analyses resulted in the highest similarity of the 16S rDNA fragment of phytoplasma from nectarine cv. Super Queen (SQ) with the parallel sequence of the strain AP15 of the ‘Candidatus Phytoplasma mali’ (16SrX‐A). The phytoplasma infecting sweet cherry cv. Kordia (Kord) was most similar to the PD1 strain of the ‘Candidatus Phytoplasma pyri’ (16SrX‐C). This is the first report of the occurrence of ‘Ca. P. prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ in naturally infected stone fruit trees in Poland.  相似文献   

16.
摘要:【目的】检测不同地区枣树品种上的枣疯植原体侵染及保守基因序列的变异。【方法】利用植原体16S rDNA的通用引物R16mF2/R16mR1、16S-23S间区序列(SR)的通用引物SR1/SR及secY基因引物FD9f/r,通过PCR检测采自国内7个地区14个枣树品种上的32个枣疯病和4个酸枣丛枝病样品。将PCR产物进行直接或克隆测序,结合已报导的测序数据,进行序列同源性和系统进化分析。【结果】所有枣疯病样品中均检测到植原体;皆属于榆树黄化16S rV-B亚组,与我国重阳木丛枝和樱桃致死黄化遗传关系  相似文献   

17.
Tomato big bud was detected for the first time in tomato plants (Lycopersicon esculentum Mill.) in the eastern region (Al‐Mafraq) of Jordan. Infected plants showed proliferation of lateral shoots, hypertrophic calyxes and greening of flower petals. The presence of phytoplasmas in diseased tomato plants was demonstrated using polymerase chain reaction (PCR) assays. The amplified DNAs yielded products of 1.8 kb (primer pair P1/P7) and 1.2 kb (primer pair R16F2/R2) by direct and nested‐PCR, respectively. DNA from tomato isolates T1 and T2 could not be amplified in the nested‐PCR assays when the aster yellow‐specific primer pair R16(1)F1/R1 was used, suggesting that the phytoplasma in these isolates is not genetically related to the 16SrI (aster yellows) group. After restriction fragment length polymorphism (RFLP) analyses, using four endonuclease enzymes (HhaI, RsaI, AluI and Bsp143I) similar patterns were formed among the digested 1.2 kb PCR products of two tomato isolates suggesting that both isolates belonged to the same phytoplasma. Compared with the RFLP profile of the reference strains, no difference in the digestion pattern was found between the tomato isolates and that of the catharanthus phyllody agent from Sudan, indicating that the phytoplasma belongs to 16SrDNA VI (clover proliferation) group.  相似文献   

18.
Phytoplasmas were detected based on nested PCR of the F2nR2 region of the 16S rDNA from Neoaliturus haematoceps (Mulsant and Rey) (Family: Cicadellidae). A total of 65 insect samples collected from sesame fields in Antalya, Turkey, during 2012–2014 were tested for phytoplasma detection. Phytoplasmas detected in fifteen samples showed an amplicon approximately 1250 bp in size using the universal primers of P1/P7 and R16F2n/R16R2. Identification of the phytoplasmas by sequence analysis revealed three different 16S rDNA phytoplasma groups: the peanut witches’‐broom, group II; clover proliferation, group VI; and pigeon pea witches’‐broom, group IX. The molecular characterization of subgroups was determined by sequence analysis and PCR‐RFLP using the restriction enzymes RsaI and TaqI. Restriction profiles of the subgroups were also confirmed using the iPhyclassifier program. BLAST and PCR‐RFLP analyses classified the subgroups as II‐D, VI‐A and IX‐C. This is the first report of molecular detection of three 16S rDNA subgroups of phytoplasmas, II‐D, VI‐A and IX‐C, from Nhaematoceps in Turkey. This study also supports earlier studies of sesame phyllody phytoplasmas by Nhaematoceps.  相似文献   

19.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran.  相似文献   

20.
Symptoms suggestive of phytoplasma diseases were observed in infected sweet cherry trees growing in the central regions of Iran. Phytoplasmas were detected in symptomatic trees by the nested polymerase chain reaction (nested PCR) using phytoplasma universal primer pairs (P1/Tint, PA2F/R, R16F2/R2 and NPA2F/R). Restriction fragment length polymorphism analyses of 485 bp DNA fragments amplified in nested PCR revealed that different phytoplamas were associated with infected trees. Sequence analyses of phytoplasma 16S rRNA gene and 16S-23S intergenic spacer region indicated that the phytoplasmas related to ' Ca. Phytoplasma asteris ' and peanut WB group infect sweet cherry trees in these regions. This is the first report of the presence of phytoplasmas related to ' Ca. Phytoplasma asteris' and peanut WB group in sweet cherry trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号