首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain insulin signaling deficits contribute to multiple pathological features of Alzheimer's disease (AD). Although intranasal insulin has shown efficacy in patients with AD, the underlying mechanisms remain largely unillustrated. Here, we demonstrate that intranasal insulin improves cognitive deficits, ameliorates defective brain insulin signaling, and strongly reduces β‐amyloid (Aβ) production and plaque formation after 6 weeks of treatment in 4.5‐month‐old APPswe/PS1dE9 (APP/PS1) mice. Furthermore, c‐Jun N‐terminal kinase activation, which plays a pivotal role in insulin resistance and AD pathologies, is significantly inhibited. The alleviation of amyloid pathology by intranasal insulin results mainly from enhanced nonamyloidogenic processing and compromised amyloidogenic processing of amyloid precursor protein (APP), and from a reduction in apolipoprotein E protein which is involved in Aβ metabolism. In addition, intranasal insulin effectively promotes hippocampal neurogenesis in APP/PS1 mice. This study, exploring the mechanisms underlying the beneficial effects of intranasal insulin on Aβ pathologies in vivo for the first time, highlights important preclinical evidence that intranasal insulin is potentially an effective therapeutic method for the prevention and treatment of AD.  相似文献   

2.
Sirtuin 2 (SIRT2) is an NAD+ dependent deacetylase that is the most abundant sirtuin protein in the brain. Accumulating evidence revealed the role of SIRT2 in a wide range of biological processes and age‐related diseases. However, the pivotal mechanism of SIRT2 played in Alzheimer's disease (AD) remains unknown. Here, we report that pharmacological inactivation of SIRT2 has a beneficial effect in AD. The deacetylase inhibitor of SIRT2 rescued the cognitive impairment in amyloid precursor protein/presenilin 1 transgenic mouse (APP/PS1 mouse), and the BACE1 cleavage was weakened to reduce the β‐amyloid (Aβ) production in the hippocampus. Moreover, we firstly identified that Reticulon 4B (RTN4B) played a crucial role between SIRT2/BACE1 regulation in AD. RTN4B, as a deacetylation substrate for SIRT2, the deacetylation by SIRT2 drived the ubiquitination and degradation of RTN4B and then the disturbed RTN4B interacted with and influenced the expression of BACE1. When we overexpressed RTN4B in neurons of the hippocampus in the AD mouse model, the abnormal Aβ accumulation and cognitive impairment were ameliorated, consistent with the results of SIRT2 inhibition in vivo. Moreover, we showed that the regulatory effect of SIRT2 on BACE1 is dependent on RTN4B. When RTN4B was knocked down, the effects of SIRT2 inhibition on the BACE1 level, Aβ pathology, and AD‐liked behaviors were also blocked. Collectively, we provide evidence that SIRT2 may be a potential target for AD; the new found SIRT2/RTN4B/BACE1 pathological pathway is one of the critical mechanisms for the improvement of SIRT2 on AD.  相似文献   

3.
4.
The number of animals used in science is increasing, bringing a concomitant obligation to minimize suffering. For animals with progressive conditions, euthanasia at a 'humane end point' is advised if the end point is scientifically valid, predictive and accurate. Our aim was to test the hypothesis that behavioural changes would reliably precede clinical signs of disease in a progressive neurological model, using retrospective analysis. We observed 100 pair-housed female R6/1 transgenic Huntington's disease (HD) mice and 28 pair-housed female wild-type (WT) mice in standard- or resource-enriched cages. Disease progression was monitored until one member of each HD pair reached a pre-defined end point based on pathological symptoms (HD end). This mouse was then euthanized together with its cage mate (HD other) and any matched WT pairs. At euthanasia, HD mice had significantly greater absolute and relative organ weights, and significantly higher alpha1 acid glycoprotein concentrations than WT mice, indicating reduced welfare. HD mice initially showed significantly greater use of cage resources than WT mice but this declined progressively. Steeper declines, and earlier cessation, in the use of some climbing and exploration resources occurred in the HD end mice compared with the HD other mice. Behavioural change can be an early indicator of disease onset.  相似文献   

5.
Currently, there are no effective therapies to ameliorate the pathological progression of Alzheimer's disease (AD). Evidence suggests that environmental factors may contribute to AD. Notably, dietary nutrients are suggested to play a key role in mediating mechanisms associated with brain function. Choline is a B‐like vitamin nutrient found in common foods that is important in various cell functions. It serves as a methyl donor and as a precursor for production of cell membranes. Choline is also the precursor for acetylcholine, a neurotransmitter which activates the alpha7 nicotinic acetylcholine receptor (α7nAchR), and also acts as an agonist for the Sigma‐1 R (σ1R). These receptors regulate CNS immune response, and their dysregulation contributes to AD pathogenesis. Here, we tested whether dietary choline supplementation throughout life reduces AD‐like pathology and rescues memory deficits in the APP/PS1 mouse model of AD. We exposed female APP/PS1 and NonTg mice to either a control choline (1.1 g/kg choline chloride) or a choline‐supplemented diet (5.0 g/kg choline chloride) from 2.5 to 10 months of age. Mice were tested in the Morris water maze to assess spatial memory followed by neuropathological evaluation. Lifelong choline supplementation significantly reduced amyloid‐β plaque load and improved spatial memory in APP/PS1 mice. Mechanistically, these changes were linked to a decrease of the amyloidogenic processing of APP, reductions in disease‐associated microglial activation, and a downregulation of the α7nAch and σ1 receptors. Our results demonstrate that lifelong choline supplementation produces profound benefits and suggest that simply modifying diet throughout life may reduce AD pathology.  相似文献   

6.
Inflammation significantly impacts the progression of Huntington's disease (HD) and the mutant HTT protein determines a pro‐inflammatory activation of microglia. Mesenchymal stem/stromal cells (MSC) from the amniotic membrane (hAMSC), and their conditioned medium (CM‐hAMSC), have been shown to possess protective effects in vitro and in vivo in animal models of immune‐based disorders and of traumatic brain injury, which have been shown to be mediated by their immunomodulatory properties. In this study, in the R6/2 mouse model for HD we demonstrate that mice treated with CM‐hAMSC display less severe signs of neurological dysfunction than saline‐treated ones. CM‐hAMSC treatment significantly delayed the development of the hind paw clasping response during tail suspension, reduced deficits in rotarod performance, and decreased locomotor activity in an open field test. The effects of CM‐hAMSC on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal atrophy and the formation of striatal neuronal intranuclear inclusions. In addition, while no significant increase was found in the expression of BDNF levels after CM‐hAMSC treatment, a significant decrease of microglia activation and inducible nitric oxide synthase levels were observed. These results support the concept that CM‐hAMSC could act by modulating inflammatory cells, and more specifically microglia.  相似文献   

7.
8.
Chronically activated microglia contribute to the development of neurodegenerative diseases such as Alzheimer's disease (AD ) by the release of pro‐inflammatory mediators that compromise neuronal function and structure. Modulating microglia functions could be instrumental to interfere with disease pathogenesis. Previous studies have shown anti‐inflammatory effects of acetylcholine (AC h) or norepinephrine (NE ), which mainly activates the β‐receptors on microglial cells. Non‐invasive vagus nerve stimulation (nVNS ) is used in treatment of drug‐resistant depression, which is a risk factor for developing AD . The vagus nerve projects to the brainstem's locus coeruleus from which noradrenergic fibers reach to the Nucleus Basalis of Meynert (NBM ) and widely throughout the brain. Pilot studies showed first signs of cognitive‐enhancing effects of nVNS in AD patients. In this study, the effects of nVNS on mouse microglia cell morphology were analyzed over a period of 280 min by 2‐photon laser scanning in vivo microscopy. Total branch length, average branch order and number of branches, which are commonly used indicators for the microglial activation state were determined and compared between young and old wild‐type and amyloid precursor protein/presenilin‐1 (APP/PS1) transgenic mice. Overall, these experiments show strong morphological changes in microglia, from a neurodestructive to a neuroprotective phenotype, following a brief nVNS in aged animals, especially in APP/PS 1 animals, whereas microglia from young animals were morphologically unaffected.

  相似文献   

9.
Given that amyloid‐β 42 (Aβ42) is believed to be a culprit in Alzheimer's disease (AD), reducing Aβ42 production should be a potential therapeutic approach. γ‐Secretase modulators (GSMs) cause selective reduction of Aβ42 or both reduction of Aβ42 and Aβ40 without affecting total Aβ through shifting the γ‐cleavage position in amyloid precursor protein. We recently reported on GSM‐2, one of the second‐generation GSMs, that selectively reduced brain Aβ42 level and significantly ameliorated cognitive deficits in plaque‐free 5.5‐month‐old Tg2576 AD model mice. Here, we investigated the effects of GSM‐2 on 10‐, 14‐, and 18‐month‐old mice which had age‐dependent increase in amyloid plaques. Eight‐day treatment with GSM‐2 significantly ameliorated cognitive deficits measured by Y‐maze task in the mice of any age. However, GSM‐2 reduced brain soluble Aβ42 only in 10‐month‐old mice. In contrast, GSM‐2 markedly reduced newly synthesized soluble Aβ42 in both 10‐ and 18‐month‐old mice with similar efficacy when measured using the stable isotope‐labeling technique, suggesting that nascent Aβ42 plays a more significant role than plaque‐associated soluble Aβ42 in the cognitive deterioration of Tg2576 mice. These findings further indicate the potential utility of approach to reducing Aβ42 synthesis in AD therapeutic regimens.  相似文献   

10.
11.
12.
13.
Oxidative modifications are a hallmark of oxidative imbalance in the brains of individuals with Alzheimer's, Parkinson's and prion diseases and their respective animal models. While the causes of oxidative stress are relatively well-documented, the effects of chronically reducing oxidative stress on cognition, pathology and biochemistry require further clarification. To address this, young and aged control and amyloid-β protein precursor-over-expressing mice were fed a diet with added R-alpha lipoic acid for 10 months to determine the effect of chronic antioxidant administration on the cognition and neuropathology and biochemistry of the brain. Both wild type and transgenic mice treated with R-alpha lipoic acid displayed significant reductions in markers of oxidative modifications. On the other hand, R-alpha lipoic acid had little effect on Y-maze performance throughout the study and did not decrease end-point amyloid-β load. These results suggest that, despite the clear role of oxidative stress in mediating amyloid pathology and cognitive decline in ageing and AβPP-transgenic mice, long-term antioxidant therapy, at levels within tolerable nutritional guidelines and which reduce oxidative modifications, have limited benefit.  相似文献   

14.
While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.  相似文献   

15.
Spontaneous late‐onset Alzheimer's disease (LOAD) accounts for more than 95% of all human AD. As mice do not normally develop AD and as understanding on molecular processes leading to spontaneous LOAD has been insufficient to successfully model LOAD in mouse, no mouse model for LOAD has been available. Existing mouse AD models are all early‐onset AD (EOAD) models that rely on forcible expression of AD‐associated protein(s), which may not recapitulate prerequisites for spontaneous LOAD. This limitation in AD modeling may contribute to the high failure rate of AD drugs in clinical trials. In this study, we hypothesized that genomic instability facilitates development of LOAD and tested two genomic instability mice models in the brain pathology at the old age. Shugoshin‐1 (Sgo1) haploinsufficient (?) mice, a model of chromosome instability (CIN) with chromosomal and centrosomal cohesinopathy, spontaneously exhibited a major feature of AD pathology; amyloid beta accumulation that colocalized with phosphorylated Tau, beta‐secretase 1 (BACE), and mitotic marker phospho‐Histone H3 (p‐H3) in the brain. Another CIN model, spindle checkpoint‐defective BubR1?/+ haploinsufficient mice, did not exhibit the pathology at the same age, suggesting the prolonged mitosis‐origin of the AD pathology. RNA‐seq identified ten differentially expressed genes, among which seven genes have indicated association with AD pathology or neuronal functions (e.g., ARC, EBF3). Thus, the model represents a novel model that recapitulates spontaneous LOAD pathology in mouse. The Sgo1?/+ mouse may serve as a novel tool for investigating mechanisms of spontaneous progression of LOAD pathology, for early diagnosis markers, and for drug development.  相似文献   

16.
Heme oxygenase‐1 (HO‐1) encoded by the HMOX1 gene is a 32‐kDa stress protein that catabolizes heme to biliverdin, free iron, and carbon monoxide (CO). Glial HO‐1 is over‐expressed in the CNS of subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The HMOX1 gene is exquisitely sensitive to oxidative stress and is induced in brain and other tissues in various models of disease and trauma. Induction of the glial HMOX1 gene may lead to pathological brain iron deposition, intracellular oxidative damage, and bioenergetic failure in AD and other human CNS disorders such as PD and MS. Therefore, targeted suppression of glial HO‐1 hyperactivity may prove to be a rational and effective therapeutic intervention in AD and related neurodegenerative disorders. In this study, we report the effects of QC‐47, QC‐56, and OB‐28, novel azole‐based competitive and reversible inhibitors of HO‐1, on oxidative damage to whole‐cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. We also report the effect of OB‐28 on the behavior and neuropathology of APPswe/PS1?E9 mice. OB‐28 was found to reduce oxidative damage to whole‐cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. Moreover, OB‐28 was found to significantly counter behavioral deficits and neuropathological alterations in APPswe/PS1?E9 mice. Attenuation of AD‐associated behavioral deficits and neuropathological changes suggests that HO‐1 may be a promising target for neuroprotective intervention in AD and other neurodegenerative diseases.

  相似文献   


17.
Several epidemiological and preclinical studies suggest that non‐steroidal anti‐inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β‐amyloid (Aβ) production and inhibit neuroinflammation. However, follow‐up clinical trials, mostly using selective cyclooxygenase (COX)‐2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX‐1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro‐inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX‐1 inhibition, rather than COX‐2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20‐month‐old triple transgenic AD (3 × Tg‐AD) mice with the COX‐1 selective inhibitor SC‐560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC‐560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg‐AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX‐1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg‐AD mice. Thus, selective COX‐1 inhibition should be further investigated as a potential therapeutic approach for AD.  相似文献   

18.
目的:明确经典阿尔兹海默症(Alzheimer's Disease,AD)小鼠模型APP/PS1的年轻小鼠是否存在学习记忆障碍,并探讨尾静脉注射同龄小鼠的血清是否可以改善年老AD小鼠的认知能力。方法:根据转基因小鼠的基因型,将同龄小鼠分为wildtype(WT)和APP/PS1两组,首先用物体辨别实验(Novel object recognition,NOR)检测2个月龄小鼠的认知能力(90min retention:WT n=6,APP/PS1 n=8; 24hours retention:WT n=7, APP/PS1=8),同时用Morris水迷宫实验(Morris water maze,MWM)检测2个月龄小鼠的空间学习记忆能力(WT n=6, APP/PS1 n=5);采用内眦取血法从8月龄小鼠中获取全血,高速离心获得血清。将8月龄APP/PS1小鼠分为两组:对照组注射PBS(n=7),实验组注射血清(n=6),每周注射两次,100μL/只/次,连续注射3周。注射结束后,用NOR法检测对照组和实验组小鼠的认知能力。结果:NOR实验结果显示APP/PS1小鼠的辨别指数(Discrimination index(%))显著低于WT小鼠(P0.05);MWM实验结果显示APP/PS1小鼠到达平台的时间明显长于WT小鼠,同时在测试阶段中,APP/PS1小鼠在目的象限的探索时间及穿越次数显著低于WT小鼠(P0.05);治疗实验中,与对照组APP/PS1小鼠的辨别指数相比较,实验组APP/PS1小鼠在注射同龄小鼠的血清后,其物体辨别指数显著升高(P0.05),小鼠脑中的Aβ沉淀明显减少。结论:APP/PS1小鼠在2个月左右就会表现出明显的学习记忆障碍;注射正常同龄鼠的血清可以明显改善APP/PS1小鼠的学习记忆能力同时阻碍Aβ沉淀的形成。  相似文献   

19.
摘要 目的:研究齐墩果酸(Oleanolic Acid,OA)对APP/PS-1双转基因阿尔茨海默病(Alzheimer''s disease,AD)小鼠模型神经保护作用及机制。方法:选取6月龄APP/PS-1雄性小鼠21只,随机分为模型组(0.5% CMC-Na)、阳性组(多奈哌齐组,0.7 mg?kg-1)、齐墩果酸组(10 mg?kg-1)每组7只,6月龄同背景SPF级C57BL/6小鼠7只为对照组。灌胃8周之后通过Morris水迷宫实验观察小鼠学习记忆能力的改变,HE染色观察神经元细胞形态,ELISA检测血清中Aβ1-42含量;免疫组化检测Aβ1-42、APP、Iba1蛋白表达情况;Western blot检测APP、Iba1蛋白表达水平。结果:(1)对照组,模型组,阳性组及齐墩果酸组进入有效区域次数分别为7.00±2.09,1.00±0.89,3.67±1.97,4.33±2.50,与模型组相比,对照组,阳性组,齐墩果酸组均有统计学意义(P<0.05);(2)血清Aβ1-42含量按上述顺序依次为4.98±0.25,2.50±0.66,4.63±0.73,4.36±0.97,与模型组相比,对照组,阳性组,齐墩果酸组均有统计学意义(P<0.05);(3)免疫组化结果显示与模型组相比,对照组,阳性组,齐墩果酸组Aβ1-42、APP、Iba1蛋白阳性细胞数减少;(4)WB结果:对照组,模型组,阳性组,齐墩果酸组APP蛋白相对表达量分别为0.52±0.17,1.38±0.35,0.89±0.25,0.93±0.27;这四组的IBA1蛋白相对表达量分别为0.98±0.34,1.79±0.74,1.06±0.61,0.88±0.49,与模型组相比,野生对照组,阳性组,齐墩果酸组APP、IBA1蛋白相对含量有统计学意义(P<0.05)。结论:齐墩果酸组可以改善APP/PS-1模型小鼠记忆力及认知功能,降低海马神经元的损伤,并通过下调Aβ1-42、APP、Iba1蛋白的表达水平来发挥保护神经作用。  相似文献   

20.
Dual‐specificity tyrosine phosphorylation‐regulated kinase‐1A (DYRK1A) is known to phosphorylate the microtubule‐associated tau protein. Overexpression is correlated with tau hyperphosphorylation and neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). This study assessed the potential of SM07883, an oral DYRK1A inhibitor, to inhibit tau hyperphosphorylation, aggregation, NFT formation, and associated phenotypes in mouse models. Exploratory neuroinflammatory effects were also studied. SM07883 specificity was tested in a kinase panel screen and showed potent inhibition of DYRK1A (IC50 = 1.6 nM) and GSK‐3β (IC50 = 10.8 nM) kinase activity. Tau phosphorylation measured in cell‐based assays showed a reduction in phosphorylation of multiple tau epitopes, especially the threonine 212 site (EC50 = 16 nM). SM07883 showed good oral bioavailability in multiple species and demonstrated a dose‐dependent reduction of transient hypothermia‐induced phosphorylated tau in the brains of wild‐type mice compared to vehicle (47%, p < 0.001). Long‐term efficacy assessed in aged JNPL3 mice overexpressing the P301L human tau mutation (3 mg/kg, QD, for 3 months) exhibited significant reductions in tau hyperphosphorylation, oligomeric and aggregated tau, and tau‐positive inclusions compared to vehicle in brainstem and spinal cord samples. Reduced gliosis compared to vehicle was further confirmed by ELISA. SM07883 was well tolerated with improved general health, weight gain, and functional improvement in a wire‐hang test compared to vehicle‐treated mice (p = 0.048). SM07883, a potent, orally bioavailable, brain‐penetrant DYRK1A inhibitor, significantly reduced effects of pathological tau overexpression and neuroinflammation, while functional endpoints were improved compared to vehicle in animal models. This small molecule has potential as a treatment for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号