首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Initiation of mRNA decay in Bacillus subtilis   总被引:7,自引:4,他引:3  
  相似文献   

4.
5.
6.
7.
8.
Enterohaemorrhagic Escherichia coli harbours a pathogenicity island encoding a type 3 secretion system used to translocate effector proteins into the cytosol of intestinal epithelial cells and subvert their function. The structural proteins of the translocon are encoded in a major espADB mRNA processed from a precursor. The translocon mRNA should be highly susceptible to RNase E cleavage because of its AU‐rich leader region and monophosphorylated 5′‐terminus, yet it manages to avoid rapid degradation. Here, we report that the espADB leader region contains a strong Shine–Dalgarno element (SD2) and a translatable mini‐ORF of six codons. Disruption of SD2 so as to weaken ribosome binding significantly reduces the concentration and stability of esp mRNA, whereas codon substitutions that impair translation of the mini‐ORF have no such effect. These findings suggest that occupancy of SD2 by ribosomes, but not mini‐ORF translation, helps to protect espADB mRNA from degradation, likely by hindering RNase E access to the AU‐rich leader region.  相似文献   

9.
10.
Mutations in the Escherichia coli rne (ams) gene have a general effect on the rate of mRNA decay in vivo. Using antibodies we have shown that the product of the rne gene is a polypeptide of relative mobility 180kDa. However, proteolytic fragments as small as 70kDa, which can arise during purification, also exhibit RNase E activity, in vitro studies demonstrate that the rne gene product, RNase E, is an endoribonuclease that cleaves mRNA at specific sites. RNase E cleaves rne mRNA and autoregulates the expression of the rne gene. In addition we demonstrate RNase E-dependent endonucleolytic cleavage of ompA mRNA, at a site known to be rate-determining for degradation and reported to be cieaved by RNase K. Our data are consistent with RNase K being a proteolytic fragment of RNase E.  相似文献   

11.
RNase E plays a central role in processing virtually all classes of cellular RNA in many bacterial species. A characteristic feature of RNase E and its paralogue RNase G, as well as several other unrelated ribonucleases, is their preference for 5′‐monophosphorylated substrates. The basis for this property has been explored in vitro. At limiting substrate, cleavage of the rpsT mRNA by RNase E (residues 1–529) is inefficient, requiring excess enzyme. The rpsT mRNA is cleaved sequentially in a 5′ to 3′ direction, with the initial cleavage(s) at positions 116/117 or 190/191 being largely driven by direct entry, independent of the 5′‐terminus or the 5′‐sensor domain of RNase E. Generation of the 147 nt 3′‐limit product requires sequential cleavages that generate 5′‐monophosphorylated termini on intermediates, and the 5′‐sensor domain of RNase E. These requirements can be bypassed with limiting enzyme by deleting a stem‐loop structure adjacent to the site of the major, most distal cleavage. Alternatively, this specific cleavage can be activated substantially by a 5′‐phosphorylated oligonucleotide annealed 5′ to the cleavage site. This finding suggests that monophosphorylated small RNAs may destabilize their mRNA targets by recruiting the 5‐sensor domain of RNase E ‘in trans’.  相似文献   

12.
13.
The Escherichia coli ribonuclease II (RNase II) is an exonuclease involved in mRNA degradation that hydrolyses single-stranded polyribonucleotides processively in the 3′ to 5′ direction. Sequencing of a 2.2 kb MselRsal fragment containing the rnb gene revealed an open reading frame of 1794 nucleotides that encodes a protein of 598 amino acid residues, whose calculated molecular mass is 67 583 Da. This value is in good agreement with that obtained by sodium dodecyl sulphate/ polyacrylamide gel electrophoresis of polypeptides synthesized by expression with the T7 RNA polymerase/promoter system. This system was also used to confirm the correct orientation of rnb. Translation initiation was confirmed by rnb–lacZ fusions. The mRNA start site was determined by S1 nuclease mapping. Two E. coli mutants harbouring different rnb alleles deficient in RNase II activity were complemented with the expressed fragment carrying the rnb gene.  相似文献   

14.
The Escherichia coli rnc-era-recO operon encodes ribonuclease III (RNase III; a dsRNA endonuclease involved in rRNA and mRNA processing and decay), Era (an essential G-protein of unknown function) and RecO (involved in the RecF homologous recombination pathway). Expression of the rnc and era genes is negatively autoregulated: RNase III cleaves the rncO ‘operator’ in the untranslated leader, destabilizing the operon mRNA. As part of a larger effort to understand RNase III and Era structure and function, we characterized rnc operon structure, function and regulation in the closely related bacterium Salmonella typhimurium. Construction of a S typhimurium strain conditionally defective for RNase III and Era expression showed that Era is essential for cell growth. This mutant strain also enabled selection of recombinant clones containing the intact S typhimurium rnc-era-recO operon, whose nucleotide sequence, predicted protein sequence, and predicted rncO RNA secondary structure were all highly conserved with those of E coli. Furthermore, genetic and biochemical analysis revealed that S typhimurium rnc gene expression is negatively autoregulated by a mechanism very similar or identical to that in E coli, and that the cleavage specificities of RNase IIIS.t. and RNase IIIE.c. are indistinguishable with regard to rncO cleavage and S typhimurium 23S rRNA fragmentation in vivo.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号