首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Grasslands and savannas, which make up > 75% of Madagascar’s land area, have long been viewed as anthropogenically derived after people settled on the island c. 2 ka. We investigated this hypothesis and an alternative – that the grasslands are an insular example of the post‐Miocene spread of C4 grassy biomes world‐wide. Location Madagascar, southern Africa, East Africa. Methods We compared the number of C4 grass genera in Madagascar with that in southern and south‐central African floras. If the grasslands are recent we would expect to find fewer species and genera in Madagascar relative to Africa and for these species and genera to have very wide distribution ranges in Madagascar. Secondly, we searched Madagascan floras for the presence of endemic plant species or genera restricted to grasslands. We also searched for evidence of a grassland specialist fauna with species endemic to Madagascar. Plant and animal species endemic to C4 grassy biomes would not be expected if these are of recent origin. Results Madagascar has c. 88 C4 grass genera, including six endemic genera. Excluding African genera with only one or two species, Madagascar has 86.6% of southern Africa’s and 89.4% of south‐central Africa’s grass genera. C4 grass species make up c. 4% of the flora of both Madagascar and southern Africa and species : genus ratios are similar (4.3 and 5.1, respectively). Turnover of grasses along geographical gradients follows similar patterns to those in South Africa, with Andropogoneae dominating in mesic biomes and Chlorideae in semi‐arid grassy biomes. At least 16 monocot genera have grassland members, many of which are endemic to Madagascar. Woody species in frequently burnt savannas include both Madagascan endemics and African species. A different woody flora, mostly endemic, occurs in less frequently burnt grasslands in the central highlands, filling a similar successional niche to montane C4 grasslands in Africa. Diverse vertebrate and invertebrate lineages have grassland specialists, including many endemic to Madagascar (e.g. termites, ants, lizards, snakes, birds and mammals). Grassland use of the extinct fauna is poorly known but carbon isotope analysis indicates that a hippo, two giant tortoises and one extinct lemur ate C4 or CAM (crassulacean acid metabolism) plants. Main conclusions The diversity of C4 grass lineages in Madagascar relative to that in Africa, and the presence of plant and animal species endemic to Madagascan grassy biomes, does not fit the view that these grasslands are anthropogenically derived. We suggest that grasslands invaded Madagascar after the late Miocene, part of the world‐wide expansion of C4 grassy biomes. Madagascar provides an interesting test case for biogeographical analysis of how these novel biomes assembled, and the sources of the flora and fauna that now occupy them. A necessary part of such an analysis would be to establish the pre‐settlement extent of the C4 grassy biomes. Carbon isotope analysis of soil organic matter would be a feasible method for doing this.  相似文献   

2.
Questions: Can prescribed fire restore C4 perennial grasses in grassland ecosystems that have become dominated by fire‐resistant C3 shrubs (Prosopis glandulosa) and C3 grasses? Do fires in different seasons alter the direction of change in grass composition? Location: Texas, USA. Methods: We quantified short‐ and long‐term (12 yr post‐fire) herbaceous functional group cover and diversity responses to replicated seasonal fire treatments: (1) repeated‐winter fires (three in 5 yr), (2) repeated‐summer fires (two in 3 yr), and (3) alternate‐season fires (two winter and one summer in 4 yr), compared with a no‐fire control. Results: Summer fires were more intense than winter fires, but all fire treatments temporarily decreased Prosopis and C3 annual grass cover. The alternate‐season fire treatment caused a long‐term increase in C4 mid‐grass cover and functional group diversity. The repeated‐summer fire treatment increased C4 short‐grass cover but also caused a long‐term increase in bare ground. The repeated winter fire treatment had no long‐term effects on perennial grass cover. Mesquite post‐fire regrowth had increasingly negative impacts on herbaceous cover in all fire treatments. Conclusions: Summer fire was necessary to shift herbaceous composition toward C4 mid‐grasses. However, the repeated‐summer fire treatment may have been too extreme and caused post‐fire herbaceous composition to “over‐shift” toward less productive C4 short‐grasses rather than C4 mid‐grasses. This study provides some of the first long‐term data showing a possible benefit of mixing seasonal fires (i.e., the alternate‐season fire treatment) in a prescribed burning management plan to restore C4 mid‐grass cover and enhance overall herbaceous diversity.  相似文献   

3.
Summary More than 500 species of the Poaceae are found in Kenya, East Africa. Eighteen of twenty-seven tribes are exclusively (except the Paniceae and Danthonieae) of the C3 photosynthetic type. A floristic analysis of low altitude grasslands suggests that nearly all species at these low altitudes are of the C4 photosynthetic type. At high altitudes, however, nearly all grasses are of the C3 photosynthetic type. Open grassland vegetation was sampled along a transect from arid low altitude sites to the top of Mt. Kenya in an attempt to document the general distributions of the photosynthetic types.The major tribes illustrated three general patterns of distribution. The C4 tribes Chlorideae, Eragrosteae, Sporoboleae, and Aristideae were abundant at low altitudes (or low indices of available soil moisture). The Paniceae and Andropogoneae were also exclusively C4 but were more common at intermediate altitudes. The C3 tribes Aveneae, Festuceae, and Agrostideae were found only at high altitudes. In these open grasslands there were no C3 species below 2,000 m and no C4 species above 3,000 m. The variation in 13C of the live grass vegetation with altitude confirms these distributional patterns and suggests a sharp transition zone between these two photosynthetic types. The photosynthetic type accounts for broad distributions within the Poaceae but these distributions are further modified by characteristics which may be inherent in the tribal groups. Ecological and paleoecological significance of these patterns of distribution are discussed.  相似文献   

4.
The variation in graminoid species composition and diversity and the distribution of photosynthetic pathways among 66 wetlands in KwaZulu-Natal, South Africa, and within six of these wetlands was described and related to measured physical parameters, using multivariate and univariate techniques. Altitude, which ranged from 550 m to 2120 m, accounted for most variation among wetlands, with an almost complete turnover of species along this gradient. Landform setting was less important in explaining overall species composition, but relationships of individual species were revealed (e.g. Eleocharis dregeana showed an affinity for depressions). Within a wetland there was an almost complete turnover of species along a gradient of wetness, as described using soil morphological criteria. Most species were consistently associated with the same wetness zones across different wetland sites, e.g., Phragmites australis with the wettest zone, Pycreus macranthus with the intermediate zone, and Eragrostis plana with the least wet zone. The occurrence and abundance of different photosynthetic pathway types depended on altitude and degree of wetness. At high altitudes, C3 sedges, notably Carex acutiformis, dominated the wettest zone and C3 and C4 grasses and sedges dominated the intermediate and least wet zones. At mid altitudes, C3 and C4 sedges and C3 grasses dominated the wettest zone, C3 and C4 grasses and sedges dominated the intermediate zone and C4 grasses dominated the least wet zone. Low altitude sites showed a similar distribution of photosynthetic pathways as mid-altitude sites, but C3 species were less abundant. Species richness was positively associated with the log of wetland size and, at the level of an individual wetland, species richness and evenness were found to be consistently greater in the intermediate and least wet zone compared with the wettest zone. The management implications of the results are discussed in the light of continuing anthropogenic loss of wetlands in the study area and global climate change.  相似文献   

5.
Wang  R.Z. 《Photosynthetica》2003,41(1):43-48
Natural occurrence of C4 species, life form, altitude pattern, and infection by the Three Gorges Project (TGP) were studied in the TGP region. 76 species (about 2.5 % of the total 2 685 vascular plant species in the region), in 6 families and 42 genera, were identified with C4 photosynthesis. 91 % of these C4 species belong to Monocotyledoneae, e.g. Cyperaceae (14 species), Gramineae (54 species), and Commelinaceae (1 species). Of these C4 species, Gramineae was the leading C4 family: 54 C4 grass species (71 % of the total C4 species), about 36 % of the total grasses, were identified in the TGP region. 98 % C4 species was found in therophyte (55 %) and hemicryptophyte (43 %). This is consistent with high grass and sedge compositions in the region. Most habitats of more than a half of these C4 species (65 %) will be submerged permanently, but no species will be endangered or extinct, because 95 % C4 species can be found from 500 to 800 m above sea level. The abundance of some C4 species will be dropped due to the reduction of distribution scope. It will take a long-term to explore the effects of the TGP on plants, vegetation, and environment.  相似文献   

6.
Many field studies have examined how site fertility, soil differences and site history influence the diversity of a plant community. However, only a few studies have examined how the identity of the dominant species influences the diversity in grasslands. Plant species differ widely in phenology, growth form and resource uses; thus, communities dominated by different species are also likely to strongly differ in the environment that they create and in which the subdominant species exist. We examined the correlation between the four most dominant species and community diversity in 2100 plots, located in 21 abandoned agricultural fields in central Minnesota over a 23‐year period. The four most common species were two non‐native C3 cool season species, Poa pratensis and Agropyron repens, and two native C4 warm season species, Schizachyrium scoparium and Andropogon gerardii. We found that the differences in the dominants explained up to 27% of the community diversity. Thus, the identity of the dominant species can have a strong influence on community diversity and studies examining factors that influence plant community diversity need to incorporate the effect of the dominants. Secondly, we found that the non‐native C3 grass dominated communities had lower overall and lower native species richness relative to the native C4 grass dominated communities. Therefore, a shift in dominants from C4 to C3 may lead to a large community diversity decline. We found that Poa pratensis, the most abundant non‐native C3 grass increased in abundance over the 23 years; thus, the negative influence of non‐natives on the community diversity is not decreasing over time and active management is required to restore native grassland plant communities.  相似文献   

7.
Arp  W. J.  Drake  B. G.  Pockman  W. T.  Curtis  P. S.  Whigham  D. F. 《Plant Ecology》1993,(1):133-143
Elevated atmospheric CO2 is known to stimulate photosynthesis and growth of plants with the C3 pathway but less of plants with the C4 pathway. An increase in the CO2 concentration can therefore be expected to change the competitive interactions between C3 and C4 species. The effect of long term exposure to elevated CO2 (ambient CO2 concentration +340 µmol CO2 mol-1) on a salt marsh vegetation with both C3 and C4 species was investigated. Elevated CO2 increased the biomass of the C3 sedgeScirpus olneyi growing in a pure stand, while the biomass of the C4 grassSpartina patens in a monospecific community was not affected. In the mixed C3/C4 community the C3 sedge showed a very large relative increase in biomass in elevated CO2 while the biomass of the C4 species declined.The C4 grassSpartina patens dominated the higher areas of the salt marsh, while the C3 sedgeScirpus olneyi was most abundant at the lower elevations, and the mixed community occupied intermediate elevations.Scirpus growth may have been restricted by drought and salt stress at the higher elevations, whileSpartina growth at the lower elevations may be affected by the higher frequency of flooding. Elevated CO2 may affect the species distribution in the salt marsh if it allowsScirpus to grow at higher elevations where it in turn may affect the growth ofSpartina.  相似文献   

8.
A survey of 93 wetlands in six catchments across the Maloti-Drakensberg is used to assess the distribution of plant functional types across altitudinal and wetness gradients. Altitudes range from 1,000 to 3,200 m a.s.l. Within each catchment, the wetlands were selected to cover the complete range in altitude and wetland types. In each of the selected wetlands, vegetation was sampled in 3 by 3 m quadrats covering the entire range of wetness represented in the wetland, from temporarily wet to permanently inundated soils. Plant species were allocated to one of 11 different functional types (examples are C3 grasses, C4 sedges, rosette plants, and shrubs), and the proportion of the vegetation in each sample occupied by each functional type was calculated from the species’ abundances. Canonical Correspondence Analysis shows that “wetness” clearly has the highest impact on the distribution of functional types, followed by altitude. The most important plant functional types in wetlands are grasses and sedges, however, at higher altitudes, forbs (especially rosette plants) and bulbous plants become a more prominent feature in the wetlands. The total amount of graminoids gradually decreases with altitude. The general trend is that sedges tend to increase with increasing wetness and C3 plants (grasses and sedges) increase with increasing altitude, but these effects are not independent. The distributions of C4 sedges and C4 grasses along an altitudinal gradient are quite different, and C4 grasses grow abundantly at much higher altitudes than C4 sedges. C4 sedges are very scarce at the altitudes represented in the Maloti-Drakensberg area, whereas C3 grasses occur in the permanently wet parts of the wetlands, especially at higher altitudes (normally mostly occupied by sedges). Shrubs are rare in wetlands and tend to be an indication of disturbance. This study complements previous studies on the distribution of grasses and sedges at the lower altitudes within KwaZulu-Natal, which found that at altitudes below 1,000 m a.s.l. C4 sedges were much more prominent, while forbs and rosette plants were largely absent. This confirms that C4 as an adaptation to hotter and warmer climates is sometimes a less favorable metabolism in wet high altitude areas. At high altitudes, rosette plants and bulbous plants become more competitive in wetlands, probably because grasses and sedges present at these altitudes generally grow smaller than they do in low altitude wetlands.  相似文献   

9.

Aim

Grasslands cover a third of Earth's landmass and provide critical ecosystem services. Anticipating how perennial C3 (cool-season) and C4 (warm-season) grasses respond to climate change will be key to predicting future composition and functioning of grasslands. Here, we evaluate environmental drivers of C3 and C4 perennial distributions and assess how C3 and C4 grass distributions shift in response to future climate change.

Location

Western United States.

Methods

We developed integrated species distribution models to identify climate and soil drivers of relative abundance of C3 and C4 perennial grasses. We then created projections of species abundances under future climate and evaluated when and where projected shifts in relative abundance were robust across climate models.

Results

Historically, C3 grasses occupied areas with lower temperature and more variable precipitation regimes, while C4 grasses occupied areas of higher temperature, greater temperature variability and greater warm-season precipitation. C4 species also occupied narrower soil texture niches. In response to future climate change, C3 grass abundance declined across 74% of areas, while C4 abundance increased across 66% of areas. C3 grasses expanded in mid- to higher-latitude areas with increasing temperature and decreasing seasonality of precipitation. In contrast, C4 grasses increased in higher-latitude regions, but declined in lower-latitude, dryer regions. Results were surprisingly robust across climate scenarios, suggesting high confidence in the direction of these future changes.

Main Conclusions

Findings imply C3 and C4 perennial grasses will have highly divergent responses to climate change that may result in grassland functional compositional changes. Increasing temperatures and precipitation variability may favour some C4 grasses, but C4 habitat expansion may be constrained by soil conditions in western USA. Results provide actionable insights for anticipating the impacts of climate change on grass-dominated and co-dominated ecosystems and improving large-scale conservation and restoration efforts.  相似文献   

10.
Aim Based on the biochemical and physiological attributes of C4 grasses, and on the close association between decarboxylation pathways and the taxa in which they evolved, the hypotheses tested were: (1) that C4 grasses would become progressively more abundant as precipitation decreased, with grasses of the NADP‐me subtype more abundant in wetter sites and those of the NAD‐me subtype more common in arid regions; and (2) that the distribution of grass subfamilies would also be correlated with annual precipitation. Location The study was conducted along a precipitation gradient in central Argentina, from the eastern Pampas (>1000 mm year?1) to the western deserts and semi‐deserts near the Andes (<100 mm year?1). Methods Percentage of species and relative cover of C3 and C4 grasses (including C4 subtypes) in local floras from 15 lowland sites of central Argentina were obtained from our own unpublished data and from recently published floristic surveys. Pearson correlation coefficients were obtained between grass distribution parameters and the available climatic data. Results The percentage of C4 grasses increased towards the arid extreme and showed a strong negative correlation with annual rainfall (r = ?0.74, P < 0.01). Within the C4 subtypes, the NADP‐me species showed a higher proportional representation at the wetter extreme, whereas the representation of NAD‐me species increased towards the more arid extreme. The relationship of PEP‐ck species with climatic parameters in central Argentina was less evident. The distributions of the Panicoideae and Chloridoideae subfamilies along the precipitation gradient were diametrically opposed, with the Panicoideae positively (r = 0.86, P < 0.001) and the Chloridoideae negatively (r = ?0.87, P < 0.001) correlated with annual precipitation. Main conclusions Our data are consistent with the broad observation that C4 grasses tend to dominate in areas where the wet season falls in the warmer summer months. In agreement with previously reported results for Africa, Asia, Australia and North America, we describe here for the first time a significant relationship between annual precipitation and the prevalence of the NADP‐me and NAD‐me photosynthetic pathways along climatic gradients for the Neotropics. We also report for the first time that correlations between C4 species and annual rainfall are stronger when the relative cover of grass species is considered. The association of grass subfamilies Panicoideae and Chloridoideae with rainfall is as strong as that recorded for the NADP‐me and NAD‐me variants, respectively, suggesting that characteristics other than decarboxylation type may be responsible for the geographic patterns described in this study.  相似文献   

11.
Wang  R.Z. 《Photosynthetica》2004,42(1):71-79
Natural occurrence of C4 species, life forms, and their longitudinal distribution patterns along the Northeast China Transect (NECT) were studied. Six vegetation regions experiencing similar irradiation regimes, but differing in longitude, precipitation, and altitude were selected along the NECT from 108 to 131 °E, around altitude of 43.5 °N. Seventy C4 species were identified in 41 genera and 13 families. 84 % of the total C4 species were found in four families: Gramineae (38 species), Chenopodiaceae (11 species), Cyperaceae (5 species), and Amaranthaceae (5 species). C4 grasses make up 54 % of the total identified C4 species along the NECT and form the leading C4 family in meadow, steppe, and desert along the NECT. C4 Chenopodiaceae species make up about 16 % of the C4 species and become less important, particularly in the meadow and the eastern end of the NECT. 57 % of the total C4 species are therophytes and 37 % are hemicryptophytes, which is consistent with floristic composition and land utilization. In general, the number of C4 species decreased significantly from the west to the east or from dry to moist areas along the NECT, and was remarkably correlated with annual precipitation (r 2= 0.677) and aridity (r 2= 0.912), except for salinized meadow region. The proportion of C4 species from all the six vegetation regions was considerably correlated with these two climatic parameters (r 2= 0.626 or 0.706, respectively). These findings suggest that the natural occurrence of C4 species varies significantly along the large-scale longitudinal gradient of the NECT. The notable relationship of C4 species number and proportion in the flora with variations in annual precipitation and aridity suggest that these two climatic parameters are the main factors controlling the longitudinal distribution patterns of C4 species along the NECT.  相似文献   

12.
High mountain regions in the tropics have thus far been impacted relatively little by anthropogenic activity or plant invasions, however, they are unlikely to be immune to impacts of global change, including climate change and other anthropogenic disturbances. Changes in fire regimes are known to accelerate the spread of invasive C4 grasses and interactions between changes in fire and climate can alter species distributions. The aim of this study was to compare grass distributions along an elevational gradient in Hawai‘i between 1966–1967 and 2008 to determine whether C4 and C3 grass distributions are shifting upward in response to alterations in fire and climate patterns. Field plots at Hawai‘i Volcanoes National Park were surveyed for grass species and cover at ?150 m elevation intervals and compared to previous surveys done in 1966–1967. We found that the transition elevation, marking a shift in dominance between C4 and C3 grasses based on relative cover, shifted upward over 40 yr (95% confidence interval = 1476 m ± 130 m in 2008 versus 1200 m ± 106 m in 1966–1967). On the other hand, maximum elevations of all C4 or C3 grasses as a group were not significantly greater than 1966–1967 elevations; however, a subset of C4 (and fewer C3) grasses moved to substantially higher elevations, and these were the species adapted to fire. 100% of fire‐adapted grasses moved up in elevation compared to 29% of non‐fire adapted species, and the change in elevation of those species (=+454 m) was significantly greater than the change in elevation of non‐fire adapted species (p = 0.003). Our study documents an upward expansion of fire‐adapted grasses at high elevations in the tropics as an important threat that seems to be compounded by warming trends.  相似文献   

13.
Arid regions of Saudi Arabia occupy most of the area of the Arabian Peninsula. These areas are at the meeting position of plants from Mediterranean, Irano-Turanian, Saharo-Arabian, and Sudanian phytogegraphical regions. Geomorphology of the area reveals a wide diversity of landforms including coastal lines, desert plains, and high mountains. Grasses are well represented in the flora of Saudi Arabia and form an appropriate group for studying the relation of grass distribution, chorology, and photosynthetic pathways. In this paper, geographical distribution of C3 and C4 grasses was studied in an area extending between latitude 17°N and latitude 31°N. Two regions were recognized in the study area, namely; a (relatively) cold region north of latitude 24°N with ample winter rainfall, and a hot region south of latitude 24°N with scarce summer rainfall. Work involved field observations and collection of grass species in the study area. Work also depended on published carbon discrimination values of grasses and biochemical analysis of C4 species subtypes. Climatic conditions in the study area vary considerably, and the distribution of grass species was found to follow patterns that reveal adaptive advantages of different photosynthetic pathways. Grass species in the cold northern region with ample winter rainfall are generally C3 grasses belonging mainly to Mediterranean/Irano-Turanean chorotypes. C3 grass species found in the southern hot region were recorded at high altitudes of southern mountains characterized by low temperatures. Grass species recorded at low altitudes in the south hot region with scarce summer rainfall were mainly C4 grasses belonging to Tropical and Saharo-Arabian-Sudanean chorotypes. Pronounced spatial variations of temperature profoundly control the geographical distribution of C3 and C4 grasses. Low temperatures in the northern cold region and at high altitudes of the southern hot region limit the occurrence of C4 grasses and shift the ecological balance in favor of C3 grasses. Results are discussed in terms of heat sensitivity of the CO2 carboxylating enzyme of C3 grasses and high temperature optima for CO2 assimilation of C4 grasses. Results are also discussed in comparison with geographical distribution of grasses in other parts of the world.  相似文献   

14.
15.
Two hundred and twenty species of 38 genera in the Cyperaceae from Australia were examined for the possible occurrence of the C4 photosynthesis and the anatomical features of leaves and culms. The Kranz type of anatomy and the carbon isotope ratios typical of C4 plants were found in 84 species in the following six genera of four tribes belonging to subfamily Cyperoideae:Bulbostylis, Crosslandia, andFimbristylis (Fimbristylideae);Lipocarpha (Lipocarpheae);Cyperus (Cypereae);Rhynchospora (Rhynchosporeae). The anatomical observation revealed that the C4 species possessed any one of the three Kranz anatomical types found by previous investigators. It was suggested that in the Cyperaceae the C4 syndrome evolved independently within several taxa of the subfamily. The relative distribution of C3 and C4 species of the Cyperaceae in Australia was investigated by use of floristic data. It was recognized that the C4 species dominated in the northern part of the continent which was characterized by tropical and subtropical savannas and hot dry areas with summer rainfall, and the C3 species in the southern part, which contained temperate areas and mediterranean climatic areas with winter rainfall.  相似文献   

16.
To better understand the coordination between dark and light reactions during the transition from C3 to C4 photosynthesis, we optimized a method for separating thylakoids from mesophyll (MC) and bundle sheath cells (BSCs) across different plant species. We grew six Paniceae grasses including representatives from the C3, C3–C4 and C4 photosynthetic types and all three C4 biochemical subtypes [nicotinamide adenine dinucleotide phosphate‐dependent malic enzyme (NADP‐ME), nicotinamide adenine dinucleotide‐dependent malic enzyme (NAD‐ME) and phosphoenolpyruvate carboxykinase (PEPCK)] in addition to Zea mays under control conditions (1000 μmol quanta m?2 s?1 and 400 ppm of CO2). Proteomics analysis of thylakoids under native conditions, using blue native polyacrylamide gel electrophoresis followed by liquid chromatography‐mass spectrometry (LC‐MS), demonstrated the presence of subunits of all light‐reaction‐related complexes in all species and cell types. C4 NADP‐ME species showed a higher photosystems I/II ratio and a clear accumulation of the NADH dehydrogenase‐like complexes in BSCs, while Cytb6f was more abundant in BSCs of C4 NAD‐ME species. The C4 PEPCK species showed no clear differences between cell types. Our study presents, for the first time, a good separation between BSC and MC for a C3–C4 intermediate grass which did not show noticeable differences in the distribution of the thylakoid complexes. For the NADP‐ME species Panicum antidotale, growth at glacial CO2 (180 ppm of CO2) had no effect on the distribution of the light‐reaction complexes, while growth at low light (200 μmol quanta m?2 s?1) promoted the accumulation of light‐harvesting proteins in both cell types. These results add to our understanding of thylakoid distribution across photosynthetic types and subtypes, and introduce thylakoid distribution between the MC and BSC of a C3–C4 intermediate species.  相似文献   

17.
Changes in C4 grass distribution and abundance are frequently observed in Quaternary, Holocene and future environmental‐change scenarios. However, the factors driving these dynamics are not fully understood, and conflicting theories have been reported. In this paper, we present a very large dataset of modern altitudinal distribution profiles of C3 and C4 grasses covering the entire Neotropical Andes, which was compared with actual climate data. The results of multivariate analysis demonstrate that, in the Neotropical Andes, mean annual temperature is the main factor governing the modern altitudinal distribution of C3 and C4 grass species. The C3 and C4 grass distributions were compared with simulations based on the Lund‐Potsdam‐Jena dynamic global vegetation model (LPJ‐DGVM), which allowed the present grass distribution to be estimated. Finally, the DGVM was employed to simulate past and future scenarios, using the IPCC's climate projections for 2100 and PMIP2 models for the Holocene Optimum (HO, 6000 years bp ) and the Last Glacial Maximum (LGM, 21 000 years bp ). The results were found to be significantly different from those obtained using a simple photosynthetic model. According to LPJ forced with the PMIP2 models for the LGM, during the LGM, the C4 grasses would not have reached higher altitudes than found in the present day.  相似文献   

18.
Abstract In this study the contribution of climatic factors and phylogenetic relationships affecting the geographical distribution of C3 and C4 genera of the Cyperaceae in South Africa was investigated. The δ13C values of herbarium specimens of 68 southern African species from 22 genera and eight tribes were used to assign the species to either the C3 or C4 photosynthetic pathway. Geographical distribution data for the Cyperaceae were used to investigate relationships between climatic factors and the number of species and proportional abundance of C4 species per region. The number of Cyperaceae species per 2° × 2° square across South Africa varied from less than five in the north‐western regions to more than 15 in the south‐western and north‐eastern regions of South Africa where rainfall exceeds 800 mm y‐1. Of the 68 species investigated, 28 had C4 photosynthesis and these were scattered among nine genera of four tribes (Cypereae, Scirpeae, Abildgaardieae and Rhyncosporeae). The proportional abundance of C4 species ranged from 14% in the winter rainfall regions of the south‐west of South Africa to 67% in the summer rainfall areas of the north‐east. The geographical distribution of species was related to their phylogenetic position such that the distributions of C3 and C4 species in Cypereae, Scirpeae and Schoeneae was quite distinct. Linear regression analysis showed that the transition temperatures (equal C3 and C4 species numbers) for the Cyperaceae were different to those obtained for the Poaceae from the same region. No strong relationships were found between the proportional abundance of C4 species and other climate factors such as altitude and rainfall. Our analysis of the current geographical distribution of C4 Cyperaceae in southern Africa in a phylogenetic context suggests that the ecological advantages conferred by the C4 pathway differ amongst the different plant groups.  相似文献   

19.
At micro‐site scale, the spatial pattern of a plant species depends on several factors including interactions with neighbours. It has been seen that unfavourable effects generate a negative association between plants, while beneficial effects generate a positive association. In grasslands, the presence of shrubby species promotes a particular microenvironment beneath their canopy that could affect differently the spatial distribution of plants with different tolerance to abiotic conditions. We measured photosynthetic active radiation, air temperature and wind speed under shrub canopies and in adjacent open sites and analysed the spatial distribution of four grass species (two C3 and two C4) in relation to shrub canopy in a grazed sub‐humid natural grassland in southern Uruguay. Radiation, air temperature and wind speed were lower under shrubs than in adjacent open sites. The spatial distribution of grasses relative to the shrub canopy varied depending on the photosynthetic metabolism of grasses. C4 grasses showed a negative association or no correlation with the shrubs, whereas C3 grasses showed a positive association. Our results highlight the importance of the photosynthetic metabolism of the grasses in the final outcome of interactions between grasses and shrubs. Micro‐environmental conditions generated underneath shrubs create a more suitable site for the establishment of C3 than for C4 grasses. These results show that facilitation could be more important than previously thought in sub‐humid grasslands.  相似文献   

20.
Influence of short-term water stress on plant growth and leaf gas exchange was studied simultaneously in a growth chamber experiment using two annual grass species differing in photosynthetic pathway type, plant architecture and phenology:Triticum aestivum L. cv. Katya-A-1 (C3, a drought resistant wheat cultivar of erect growth) andTragus racemosus (L.) All. (C4, a prostrate weed of warm semiarid areas). At the leaf level, gas exchange rates declined with decreasing soil water potential for both species in such a way that instantaneous photosynthetic water use efficiency (PWUE, mmol CO2 assimilated per mol H2O transpired) increased. At adequate water supply, the C4 grass showed much lower stomatal conductance and higher PWUE than the C3 species, but this difference disappeared at severe water stress when leaf gas exchange rates were similarly reduced for both species. However, by using soil water more sparingly, the C4 species was able to assimilate under non-stressful conditions for a longer time than the C3 wheat did. At the whole-plant level, decreasing water availability substantially reduced the relative growth rate (RGR) ofT. aestivum, while biomass partitioning changed in favour of root growth, so that the plant could exploit the limiting water resource more efficiently. The change in partitioning preceded the overall reduction of RGR and it was associated with increased biomass allocation to roots and less to leaves, as well as with a decrease in specific leaf area. Water saving byT. racemosus sufficiently postponed water stress effects on plant growth occurring only as a moderate reduction in leaf area enlargement. For unstressed vegetative plants, relative growth rate of the C4 T. racemosus was only slightly higher than that of the C3 T. aestivum, though it was achieved at a much lower water cost. The lack of difference in RGR was probably due to growth conditions being relatively suboptimal for the C4 plant and also to a relatively large investment in stem tissues by the C4 T. racemosus. Only 10% of the plant biomass was allocated to roots in the C4 species while this was more than 30% for the C3 wheat cultivar. These results emphasize the importance of water saving and high WUE of C4 plants in maintaining growth under moderate water stress in comparison with C3 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号