首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution conformation of the self-complementary RNA-DNA hybrid hexamer 5'-[r(GCA)d(TGC)]2 is investigated by NMR spectroscopy and restrained molecular dynamics. The 1H-NMR spectrum is assigned in a sequential manner using two-dimensional homonuclear Hartmann-Hahn and nuclear Overhauser enhancement spectroscopy. From the latter a set of 178 approximate interproton distance restraints are determined and used as the basis of a structure refinement by restrained molecular dynamics. Eight independent calculations are carried out, four from a classical A-type geometry and four from a classical B-type one. Convergence is achieved to very similar A-type structures with an average atomic root mean square difference between them of 1.0 +/- 0.2 A. The converged structures exhibit variations in helical parameters similar to those found previously for the analogue RNA hexamer 5'-r(GCAUGC)2 [(1988) Biochemistry 27, 1735-1743].  相似文献   

2.
The solution structure of the self-complementary dodecamer 5'd(CGCGPATTCGCG)2, containing a purine-thymine base pair within the hexameric canonical recognition site GAATTC for the restriction endonuclease EcoRI, is investigated by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Nonexchangeable and exchangeable protons are assigned in a sequential manner. A set of 228 approximate interproton distance restraints are derived from two-dimensional nuclear Overhauser enhancement spectra recorded at short mixing times. These distances are used as the basis for refinement using restrained molecular dynamics in which the interproton distance restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight calculations are carried out, four starting from classical A-DNA and four from classical B-DNA. In all cases convergence to very similar B-type structures is achieved with an average atomic root mean square (rms) difference between the eight converged structures of 0.7 +/- 0.2 A, compared to a value of 6.5 A for that between the two starting structures. It is shown that the introduction of the purine-thymine mismatch does not result in any significant distortion of the structure. The variations in the helical parameters display a clear sequence dependence. The variation in helix twist and propeller twist follows Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. Overall the structure is straight. Closer examination, however, reveals that the central 5 base pair steps describe a smooth bend directed toward the major groove with a radius of curvature of approximately 38 A, which is compensated by two smaller kinks in the direction of the minor groove at base pair steps 3 and 9. These features can be explained in terms of the observed variation in roll and slide.  相似文献   

3.
The solution structure of the self-complementary DNA hexamer 5'd(GCATGC)2 comprising the specific target site for the restriction endonuclease Sph 1 is investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics. All the nonexchangeable proton resonances are assigned sequentially, and from time-dependent nuclear Overhauser enhancement measurements a set of 158 approximate interproton distances are determined. These distances are used as the basis of a structure refinement using restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained molecular dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 3.3 A]. In both cases convergence is achieved to essentially identical structures satisfying the experimental restraints and having a root mean square difference of only 0.3 A between them, which is within the rms fluctuations of the atoms about their average positions. These results suggest that the restrained molecular dynamics structures represent reasonable approximations of the solution structure. The converged structures are of the B type and exhibit clear sequence-dependent variations of helical parameters, some of which follow Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. In addition, the converged restrained dynamics structures appear bent with a radius of curvature of approximately 20 A. This bending appears to be due almost entirely to the large positive base roll angles, particularly at the Pyr-Pur steps. Further, the global and local helix axes are not coincident, and the global helix axis represents a superhelical axis which the bent DNA, when extended into an "infinite" helix by repeated translation and rotation, wraps around.  相似文献   

4.
The solution structure of the self-complementary DNA decamer 5'd(CTGGATCCAG)2 comprising the specific target site for the restriction endonuclease BamH1 is investigated by using nuclear magnetic resonance sectroscopy and restrained molecular dynamics. With the exception of the H5'/H5" sugar proton resonances, all the nonexchangeable proton resonances are assigned sequentially by using pure-phase absorption two-dimensional nuclear Overhauser enhancement spectroscopy. From the time dependence of the nuclear Overhauser effects a set of 160 approximate interproton distances is determined and used as the basis of a structure refinement employing restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 5.7 A]. In both cases convergence is achieved to very similar B-type structures with an atomic rms difference of 0.9 A which is comparable to the rms fluctuations of the atoms about their average positions. In addition, the rms difference between the experimental and calculated values of the interproton distances for both average restrained dynamics structures is approximately 0.3 A. These results suggest that the converged restrained molecular dynamics structures represent reasonable approximations of the solution structure. The average restrained dynamics structures exhibit clear sequence-dependent variations of torsion angles and helical parameters. In addition, the structures exhibit a small bend of around 10-20 degrees at the second (TpG) and eighth (CpA) base pair steps. This can be attributed to the positive base roll angles and large base pair slide values at the two Pyr-Pur steps. The central core of the decamer comprising the six-base recognition site for BamH1 (GGATCC), however, is straight.  相似文献   

5.
The solution structure of the self-complementary DNA hexamer 5' d(C-G-T-A-C-G)2 is refined by restrained molecular dynamics in which 192 interproton distances, determined from pre-steady-state nuclear Overhauser enhancement measurements, are incorporated into the total energy of the system in the form of effective potentials. First the method is tested by applying an idealized set of distance restraints taken from classical B-DNA to a simulation starting off from A-DNA and vice versa. It is shown that in both cases the expected transition between A- and B-DNA occurs. Second, a set of restrained molecular dynamics calculations is carried out starting from both A- and B-DNA with the experimental interproton distances for 5' d(C-G-T-A-C-G)2 as restraints. Convergence to the same B-type structure is achieved with the interproton distances equal to the measured values within experimental error. The root-mean-square atomic difference between the two average restrained dynamics structures (less than 1 A) is approximately the same as the root-mean-square fluctuations of the atoms.  相似文献   

6.
The applicability of restrained molecular dynamics for the determination of three-dimensional protein structures on the basis of short interproton distances (less than 4 A) that can be realistically determined from nuclear magnetic resonance measurements in solution is assessed. The model system used is the 1.2 A resolution crystal structure of the 46 residue protein crambin, from which a set of 240 approximate distance restraints, divided into three ranges (2.5 +/- 0.5, 3.0+0.5(-1.0) and 4 +/- 1 A), is derived. This interproton distance set comprises 159 short-range ([i-j] less than or equal to 5) and 56 ([i-j] greater than 5) long-range inter-residue distances and 25 intra-residue distances. Restrained molecular dynamics are carried out using a number of different protocols starting from two initial structures: a completely extended beta-strand; and an extended structure with two alpha-helices in the same positions as in the crystal structure (residues 7 to 19, and 23 to 30) and all other residues in the form of extended beta-strands. The root-mean-square (r.m.s.) atomic differences between these two initial structures and the crystal structure are 43 A and 23 A, respectively. It is shown that, provided protocols are used that permit the secondary structure elements to form at least partially prior to folding into a tertiary structure, convergence to the correct final structure, both globally and locally, is achieved. The r.m.s. atomic differences between the converged restrained dynamics structures and the crystal structure range from 1.5 to 2.2 A for the backbone atoms and from 2.0 to 2.8 A for all atoms. The r.m.s. atomic difference between the X-ray structure and the structure obtained by first averaging the co-ordinates of the converged restrained dynamics structures is even smaller: 1.0 A for the backbone atoms and 1.6 A for all atoms. These results provide a measure with which to judge future experimental results on proteins whose crystal structures are unknown. In addition, from an examination of the dynamics trajectories, it is shown that the convergence pathways followed by the various simulations are different.  相似文献   

7.
A M Gronenborn  G M Clore 《Biochemistry》1989,28(14):5978-5984
The relative contributions of the interproton distance restraints derived from nuclear Overhauser enhancement measurements and of the empirical energy function in the determination of oligonucleotide structures by restrained molecular dynamics are investigated. The calculations are based on 102 intraresidue and 126 interresidue interproton distance restraints derived from short mixing time two-dimensional nuclear Overhauser enhancement data on the dodecamer 5'd(CGCGPATTCGCG)2 [Clore, G.M., Oschkinat, H., McLaughlin, L.W., Benseler, F., Scalfi Happ, C., Happ, E., & Gronenborn, A.M. (1988) Biochemistry 27, 4185-4197]. Eight interproton distance restraint lists were made up with errors ranging from -0.1/+0.2 to -1.2/+1.3 A for r less than 2.5 A and from -0.2/+0.3 to -1.3/+1.4 A for r greater than or equal to 2.5 A. These restraints were incorporated into the total energy function of the system in the form of square-well potentials with force constants set sufficiently high to ensure that the deviations between calculated distances and experimental restraints were very small (average interproton distance rms deviation of less than 0.06 A). For each data set, six calculations were carried out, three starting from classical A-DNA and three from classical B-DNA. The results show that structural changes occurring during the course of restrained molecular dynamics and the degree of structural convergence are determined by the interproton distance restraints. All the structures display similar small deviations from idealized geometry and have the same values for the nonbonding energy terms comprising van der Waals, electrostatic, and hydrogen-bonding components. Thus, the function of the empirical energy function is to maintain near perfect stereochemistry and nonbonded interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The solution conformation of potato carboxypeptidase inhibitor (CPI) has been investigated by 1H NMR spectroscopy. The spectrum is assigned in a sequential manner by using two-dimensional NMR techniques to identify through-bond and through-space (less than 5 A) connectivities. A set of 309 approximate interproton distance restraints is derived from the two-dimensional nuclear Overhauser enhancement spectra and used as the basis of a three-dimensional structure determination by a combination of metric matrix distance geometry and restrained molecular dynamics calculations. A total of 11 converged distance geometry structures were computed and refined by using restrained molecular dynamics. The average atomic root mean square (rms) difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.3 A for residues 2-39 and 0.9 +/- 0.2 A for residues 5-37. The corresponding values for all atoms are 1.9 +/- 0.3 and 1.4 +/- 0.2 A, respectively. The larger values for residues 2-38 relative to those for residues 5-37 arise from the fact that the positions of the N- (residues 1-4) and C- (residues 38-39) terminal tails are rather poorly determined, whereas those of the core of the protein (residues 5-37) are well determined by the experimental interproton distance data. The computed structures are very close to the X-ray structure of CPI in its complex with carboxypeptidase, and the backbone atomic rms difference between the mean of the computed structures and the X-ray structure is only 1.2 A. Nevertheless, there are some real differences present which are evidenced by significant deviations between the experimental upper interproton distance limits and the corresponding interproton distances derived from the X-ray structure. These principally occur in two regions, residues 18-20 and residues 28-30, the latter comprising part of the region of secondary contacts between CPI and carboxypeptidase in the X-ray structure.  相似文献   

9.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   

10.
The determination of the three-dimensional solution structure of α1-purothionin using a combination of metric matrix distance geometry and restrained molecular dynamics calculations based on n.m.r. data is presented. The experimental data comprise complete sequence-specific proton resonance assignments, a set of 310 approximate interproton distance restraints derived from nuclear Overhauser effects, 27 Ø backbone torsion angle restraints derived from vicinal coupling constants, 4 distance restraints from hydrogen bonds and 12 distance restraints from disulphide bridges. The average atomic rms difference between the final nine converged structures and the mean structure obtained by averaging their coordinates is 1.5 ± 0.1 å for the backbone atoms and 2.0 ± 0.1 å for all atoms. The overall shape of α1-purothionin is that of the capital letter L, similar to that of crambin, with the longer arm comprising two approximately parallel α-helices and the shorter arm a strand and a mini anti-parallel β sheet.  相似文献   

11.
R Bhaskaran  L C Chuang  C Yu 《Biopolymers》1992,32(12):1599-1608
The conformation of oxytocin, the neurohypophyseal nonapeptide hormone, in solution in deuterated dimethyl sulfoxide has been determined by 1H-nmr. The structural determination is based on the experimental data set of nuclear Overhauser effect restraints. Obtained after the restrained molecular dynamics simulation on an initial structure of extended conformation, five resultant structures satisfy the experimental restraints well. These structures resemble that of the crystal structure of deamino-oxytocin, an analogue of oxytocin, in terms of a close correlation observed both at two beta-turn regions of the 20-membered tocin ring and at the tripeptide tail end. Based on this comparison and analysis of restrained molecular dynamics trajectories, we found that, although the turns are stabilized by the formation of hydrogen bonds, the oxytocin molecule possesses a slight twist in DMSO solution relative to the orientation of deamino-oxytocin in the crystalline state. Analyses of oxytocin conformation indicate that the tripeptide tail is more flexible than the tocin ring.  相似文献   

12.
The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel.  相似文献   

13.
The solution conformation of the antibacterial polypeptide cecropin A from the Cecropia moth is investigated by nuclear magnetic resonance (NMR) spectroscopy under conditions where it adopts a fully ordered structure, as judged by previous circular dichroism studies [Steiner, H. (1982) FEBS Lett. 137, 283-287], namely, 15% (v/v) hexafluoroisopropyl alcohol. By use of a combination of two-dimensional NMR techniques the 1H NMR spectrum of cecropin A is completely assigned. A set of 243 approximate interproton distance restraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 32 distance restraints for the 16 intrahelical hydrogen bonds identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing [Nilges, M., Clore, G.M., & Gronenborn, A.M. (1988) FEBS Lett. 229, 317-324]. The calculations are carried out starting from three initial structures, an alpha-helix, an extended beta-strand, and a mixed alpha/beta structure. Seven independent structures are computed from each starting structure by using different random number seeds for the assignments of the initial velocities. All 21 calculated structures satisfy the experimental restraints, display very small deviations from idealized covalent geometry, and possess good nonbonded contacts. Analysis of the 21 converged structure indicates that there are two helical regions extending from residues 5 to 21 and from residues 24 to 37 which are very well defined in terms of both atomic root mean square differences and backbone torsion angles. For the two helical regions individually the average backbone rms difference between all pairs of structures is approximately 1 A. The long axes of the two helices lie in two planes, which are at an angle of 70-100 degrees to each other. The orientation of the helices within these planes, however, cannot be determined due to the paucity of NOEs between the two helices.  相似文献   

14.
Proton homonuclear two-dimensional (2D) NOE spectra were obtained for the decamer [d(ATATATAUAT)]2 as a function of mixing time, and proton resonance assignments were made. Quantitative assessment of the 2D NOE cross-peak intensities was used in conjunction with the program MARDIGRAS, which entails a complete relaxation matrix analysis of the 2D NOE peak intensities, to obtain a set of upper and lower bound interproton distance constraints. The analysis with MARDIGRAS was carried out using three initial models: A-DNA, B-DNA and Z-DNA. The distance constraints determined were essentially the same regardless of initial structure. These experimental structural constraints were used with restrained molecular dynamics calculations to determine the solution structure of the decamer. The molecular dynamics program AMBER was run using A-DNA or B-DNA as starting model. The root-mean-square (rms) difference between these two starting models is 0.504 nm. The two starting models were subjected to 22.5 ps of restrained molecular dynamics calculations. The coordinates of the last 10.5 ps of the molecular dynamics runs were averaged to give two final structures. MDA and MDB. The rms difference between these two structures is 0.09 nm, implying convergence of the two molecular dynamics runs. The 2D NOE spectral intensities calculated for the derived structures are in good agreement with experimental spectra, based on sixth-root residual index analysis of intensities. A detailed examination of the structural features suggests that while the decamer is in the B-family of DNA structures, many torsion angle and helical parameters alternate from purine to pyrimidine, with kinks occurring at the U-A steps.  相似文献   

15.
An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures that the different trajectories diverge during the early stages of the simulations and only converge later as more and more interproton distance restraints are satisfied. The average backbone atomic r.m.s. difference between the converged structures is 2.2 +/- 0.3 A for crambin (nine structures), 2.4 +/- 0.3 A for CPI (eight structures) and 2.5 +/- 0.2 A for BSPI-2 (five structures). The backbone atomic r.m.s. difference between the mean structures derived by averaging the coordinates of the converged structures and the corresponding X-ray structures is 1.2 A for crambin, 1.6 A for CPI and 1.7 A for BSPI-2.  相似文献   

16.
Summary The structure of the ColE1 repressor of primer (rop) protein in solution was determined from the proton nuclear magnetic resonance data by a combined use of distance geometry and restrained molecular dynamics calculations. A set of structures was determined with low internal energy and virtually no violations of the experimental distance restraints. Rop forms homodimers: Two helical hairpins are arranged as an antiparallel four helix bundle with a left-handed rope-like twist of the helix axes and with left-handed bundle topology. The very compact packing of the side chains in the helix interfaces of the rop coiled-coil structure may well account for its high stability. Overall, the solution structure is highly similar to the recently determined X-ray structure (Banner, D.W., Kokkinidis, M. and Tsernoglou, D. (1987)J. Mol. Biol.,196, 657–675), although there are minor differences in regions where packing forces appear to influence the crystal structure.Abbreviations rop repressor of primer - NMR nuclear magnetic resonance - NOE nuclear Overhauser enhancement - NOESY NOE spectroscopy - RAN Set Structures generated from random choice of the dihedrai angles - HEL Set Structures generated from random choice of the dihedral angles restricted to ranges allowed for helices - MD molecular dynamics - EM energy minimization - RMSD root-mean-square deviation of atomic positions  相似文献   

17.
A restrained least squares refinement of the solution structure of the double-stranded DNA undecamer 5'd(AAGTGT-GACAT).5'd(ATGTCACACTT) comprising a portion of the specific target site of the cAMP receptor protein in the gal operon is presented. The structure is refined on the basis of both distance and planarity restraints, 2331 in all. The distance restraints comprise 150 interproton distances determined from pre-steady state nuclear Overhauser enhancement measurements and 2159 other interatomic distances derived from idealized geometry (i.e., distances between covalently bonded atoms, between atoms defining fixed bond angles, and between atoms defining hydrogen bonding in AT and GC base pairs). Two refinements were carried out and in both cases the final RMS difference between the experimental and calculated interproton distances was 0.2 A. The difference between the two refined structures is small (overall RMS difference of 0.23 A) and represents the error in the refined coordinates. Although the refined structures have an overall B-type conformation there are large variations in many of the local conformational parameters including backbone and glycosidic bond torsion angles, helical twist and propellor twist, base roll and base tilt angles.  相似文献   

18.
The solution conformation of actinomycin D, the Gram-positive antibiotic and DNA-binding drug, has been determined by 1H-NMR in deuterated dimethyl sulfoxide. The structure determination is based on the experimental data set of NOE restraints. Four structures were obtained from the distance geometry and restrained molecular dynamics calculation. The resultant structures satisfy the experimental restraints very well. These structures are found to be compatible with the X-ray crystal structures.  相似文献   

19.
The polypeptide fold of the 79-residue globular domain of chicken histone H5 (GH5) in solution has been determined by the combined use of distance geometry and restrained molecular dynamics calculations. The structure determination is based on 307 approximate interproton distance restraints derived from n.m.r. measurements. The structure is composed of a core made up of residues 3-18, 23-34, 37-60 and 71-79, and two loops comprising residues 19-22 and 61-70. The structure of the core is well defined with an average backbone atomic r.m.s. difference of 2.3 +/- 0.3 A between the final eight converged restrained dynamics structures and the mean structure obtained by averaging their coordinates best fitted to the core residues. The two loops are also well defined locally but their orientation with respect to the core could not be determined as no long range ([i-j[ greater than 5) proton-proton contacts could be observed between the loop and core residues in the two-dimensional nuclear Overhauser enhancement spectra. The structure of the core is dominated by three helices and has a similar fold to the C-terminal DNA binding domain of the cAMP receptor protein.  相似文献   

20.
The solution structure of the 64 residue structured domain (residues 20-83) of barley serine proteinase inhibitor 2 (BSPI-2) is determined on the basis of 403 interproton distance, 34 phi backbone torsion angle and 26 hydrogen bonding restraints derived from n.m.r. measurements. A total of 11 converged structures were computed using a metric matrix distance geometry algorithm and refined by restrained molecular dynamics. The average rms difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.2 A for the backbone atoms and 2.1 +/- 0.1 A for all atoms. The overall structure, which is almost identical to that found by X-ray crystallography, is disc shaped and consists of a central four component mixed parallel and antiparallel beta-sheet flanked by a 13 residue alpha-helix on one side and the reactive site loop on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号