首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhu Z  Sun D  Davidson VL 《Biochemistry》2000,39(37):11184-11186
Methylamine dehydrogenase (MADH) is a tryptophan tryptophylquinone (TTQ) dependent enzyme that catalyzes the oxidative deamination of primary amines. Amino acid residues of both the TTQ-bearing beta subunit and the noncatalytic alpha subunit line a substrate channel that leads from the protein surface to the enzyme active site. Phe55 of the alpha subunit is located at the opening of the active site. Conversion of alphaPhe55 to alanine dramatically alters the substrate preference of MADH. The K(m) for methylamine increases from 9 microM to 15 mM. The preferred substrates are now primary amines with chain lengths of at least seven carbons. The K(m) for 1, 10-diaminodecane is 11 microM, compared to 1.2 mM for wild-type MADH. Despite the large variation in K(m) values, k(cat) values are relatively unaffected by the mutation. Molecular modeling of substrates into the crystal structure of the enzyme active site and substrate channel provides an explanation for the dramatic changes in substrate specificity caused by this mutation of a single amino acid residue.  相似文献   

2.
3.
4.
5.
The effect of pH on steady state kinetic parameters for the yeast alcohol dehydrogenase-catalyzed reduction of aldehydes and oxidation of alcohols has been studied. The oxidation of p-CH3 benzyl alcohol-1,1-h2 and -1,1-d2 by NAD+ was found to be characterized by large deuterium isotope effects (kH/kD = 4.1 plus or minus 0.1) between pH 7.5 and 9.5, indicating a rate-limiting hydride trahsfer step in this pH range; a plot of kCAT versus pH could be fit to a theoretical titration curve, pK = 8.25, where kCAT increases with increasing pH. The Michaelis constnat for p-CH3 benzyl alcohol was independent of pH. The reduction of p-CH3 benzaldehyde by NADH and reduced nicotinamide adenine dinucleotide with deuterium in the 4-A position (NADD) cound not be studied below pH 8.5 due to substrate inhibition; however, between pH 8.5 and 9.5, kCAT was found to decrease with increasing pH and to be characterized by significant isotope effects (kH/kD = 3.3 plus or minus 0.3). In the case of acetaldehyde reduction by NADH and NADD, isotope effects were found to be small and exxentially invariant (kH/kD = 2.O plus or minus 0.4) between pH 7.2 and 9.5, suggesting a partially rate-limiting hydride transger step for this substrate; a plot of kCAT/K'b (where K'b is the Michaelis constant for acetaldehyde) versus pH could be fit to a titration curve, pK = 8.25. The titration curve for acetaldehyde reduction has the same pK but is opposite in direction to that observed for p-CH3 benzyl alcohol oxidation. The data presented in this paper indicate a dependence on different enzyme forms for aldehyde reduction and alcohol oxidation and are consistent with a single active site side chain, pK = 8.25, which functions in acid-base catalysis of the hydride transfer step.  相似文献   

6.
Computational methods have now become a valuable tool to understand the way in which enzymes catalyse chemical reactions and to aid the interpretation of a diverse set of experimental data. This study focuses on the influence of the condensed-phase environment structure on proton transfer mechanisms, with an aim to understand how C-H bond cleavage is mediated in enzymatic reactions. We shall use a combination of molecular simulation, ab initio or semi-empirical quantum chemistry and semi-classical multidimensional tunnelling methods to consider the primary kinetic isotope effects of the enzyme methylamine dehydrogenase (MADH), with reference to an analogous application to triosephosphate isomerase. Analysis of potentially reactive conformations of the system, and correlation with experimental isotope effects, have highlighted that a quantum tunnelling mechanism in MADH may be modulated by specific amino acid residues, such as Asp428, Thr474 and Asp384.  相似文献   

7.
Zhu Z  Davidson VL 《Biochemistry》1999,38(15):4862-4867
The two-electron oxidation of tryptophan tryptophylquinone (TTQ) in substrate-reduced methylamine dehydrogenase (MADH) by amicyanin is known to proceed via an N-semiquinone intermediate in which the substrate-derived amino group remains covalently attached to TTQ [Bishop, G. R., and Davidson, V. L. (1996) Biochemistry 35, 8948-8954]. A new method for the stoichiometric formation of the N-semiquinone in vitro has allowed the study of the oxidation of the N-semiquinone by amicyanin in greater detail than was previously possible. Conversion of N-semiquinone TTQ to the quinone requires two biochemical events, electron transfer to amicyanin and release of ammonia from TTQ. Using rapid-scanning stopped-flow spectroscopy, it is shown that this occurs by a sequential mechanism in which oxidation to an imine (N-quinone) precedes hydrolysis by water and ammonia release. Under certain reaction conditions, the N-quinone intermediate accumulates prior to the relatively slow hydrolysis step. Correlation of these transient kinetic data with steady-state kinetic data indicates that the slow hydrolysis of the N-quinone by water does not occur in the steady state. In the presence of excess substrate, the next methylamine molecule initiates a nucleophilic attack of the N-quinone TTQ, causing release of ammonia that is concomitant with the formation of the next enzyme-substrate cofactor adduct. In light of these results, the usually accepted steady-state reaction mechanism of MADH is revised and clarified to indicate that reactions of the quinone form of TTQ are side reactions of the normal catalytic pathway. The relevance of these conclusions to the reaction mechanisms of other enzymes with carbonyl cofactors, the reactions of which proceed via Schiff base intermediates, is also discussed.  相似文献   

8.
Ma JK  Wang Y  Carrell CJ  Mathews FS  Davidson VL 《Biochemistry》2007,46(39):11137-11146
Amicyanin is a type 1 copper protein that is the natural electron acceptor for the quinoprotein methylamine dehydrogenase (MADH). A P52G amicyanin mutation increased the Kd for complex formation and caused the normally true electron transfer (ET) reaction from O-quinol MADH to amicyanin to become a gated ET reaction (Ma, J. K., Carrell, C. J., Mathews, F. S., and Davidson, V. L. (2006) Biochemistry 45, 8284-8293). One consequence of the P52G mutation was to reposition the side chain of Met51, which is present at the MADH-amicyanin interface. To examine the precise role of Met51 in this interprotein ET reaction, Met51 was converted to Ala, Lys, and Leu. The Kd for complex formation of M51A amicyanin was unchanged but the experimentally determined electronic coupling increased from 12 cm-1 to 142 cm-1, and the reorganization energy increased from 2.3 to 3.1 eV. The rate and salt dependence of the proton transfer-gated ET reaction from N-quinol MADH to amicyanin is also changed by the M51A mutation. These changes in ET parameters and rates for the reactions with M51A amicyanin were similar to those caused by the P52G mutation and indicated that the ET reaction had become gated by a similar process, most likely a conformational rearrangement of the protein ET complex. The results of the M51K and M51L mutations also have consequences on the kinetic mechanism of regulation of the interprotein ET with effects that are intermediate between what is observed for the reaction of the native amicyanin and M51A amicyanin. These data indicate that the loss of the interactions involving Pro52 were primarily responsible for the change in Kd for P52G amicyanin, while the interactions involving the Met51 side chain are entirely responsible for the change in ET parameters and conversion of the true ET reaction of native amicyanin into a conformationally gated ET reaction.  相似文献   

9.
Argyrou A  Blanchard JS  Palfey BA 《Biochemistry》2002,41(49):14580-14590
Lipoamide dehydrogenase catalyses the NAD(+)-dependent oxidation of the dihydrolipoyl cofactors that are covalently attached to the acyltransferase components of the pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine reductase multienzyme complexes. It contains a tightly, but noncovalently, bound FAD and a redox-active disulfide, which cycle between the oxidized and reduced forms during catalysis. The mechanism of reduction of the Mycobacterium tuberculosis lipoamide dehydrogenase by NADH and [4S-(2)H]-NADH was studied anaerobically at 4 degrees C and pH 7.5 by stopped-flow spectrophotometry. Three phases of enzyme reduction were observed. The first phase, characterized by a decrease in absorbance at 400-500 nm and an increase in absorbance at 550-700 nm, was fast (k(for) = 1260 s(-)(1), k(rev) = 590 s(-)(1)) and represents the formation of FADH(2).NAD(+), an intermediate that has never been observed before in any wild-type lipoamide dehydrogenase. A primary deuterium kinetic isotope effect [(D)(k(for) + k(rev)) approximately 4.2] was observed on this phase. The second phase, characterized by regain of the absorbance at 400-500 nm, loss of the 550-700 nm absorbance, and gain of 500-550 nm absorbance, was slower (k(obs) = 200 s(-)(1)). This phase represents the intramolecular transfer of electrons from FADH(2) to the redox-active disulfide to generate the anaerobically stable two-electron reduced enzyme, EH(2). The third phase, characterized by a decrease in absorbance at 400-550 nm, represents the formation of the four-electron reduced form of the enzyme, EH(4). The observed rate constant for this phase showed a decreasing NADH concentration dependence, and results from the slow (k(for) = 57 s(-)(1), k(rev) = 128 s(-)(1)) isomerization of EH(2) or slow release of NAD(+) before rapid NADH binding and reaction to form EH(4). The mechanism of oxidation of EH(2) by NAD(+) was also investigated under the same conditions. The 530 nm charge-transfer absorbance of EH(2) shifted to 600 nm upon NAD(+) binding in the dead time of mixing of the stopped-flow instrument and represents formation of the EH(2).NAD(+) complex. This was followed by two phases. The first phase (k(obs) = 750 s(-)(1)), characterized by a small decrease in absorbance at 435 and 458 nm, probably represents limited accumulation of FADH(2).NAD(+). The second phase was characterized by an increase in absorbance at 435 and 458 nm and a decrease in absorbance at 530 and 670 nm. The observed rate constant that describes this phase of approximately 115 s(-)(1) probably represents the overall rate of formation of E(ox) and NADH from EH(2) and NAD(+), and is largely determined by the slower rates of the coupled sequence of reactions preceding flavin oxidation.  相似文献   

10.
Crystal structures of the reactive short-lived species that occur in chemical or binding reactions can be determined using X-ray crystallography via time-resolved or kinetic trapping approaches. Recently, various kinetic trapping methods have been used to determine the structure of intermediates in ligand binding to myoglobin.  相似文献   

11.
12.
13.
It had been previously reported that aromatic amines were not substrates for the bacterial quinoprotein methylamine dehydrogenase. In this study, benzylamine-dependent activity was also not observed in the steady-state assay of this enzyme with the artificial electron acceptor phenazine ethosulfate (PES). Benzylamines did, however, stoichiometrically reduce the protein-bound tryptophan tryptophylquinone (TTQ) prosthetic group and acted as reversible competitive inhibitors of methylamine oxidation when the enzyme was assayed with PES. When methylamine dehydrogenase activity was monitored using a steady-state assay which employed its physiological electron acceptor amicyanin instead of PES, very low but detectable benzylamine-dependent activity was observed. The reactions of a series of para-substituted benzylamines with methylamine dehydrogenase were examined. A Hammett plot of the log of Ki values for the competitive inhibition by these amines against sigma p exhibited a negative slope. Rapid kinetic measurements allowed the determination of values of k3 and Ks for the reduction of TTQ by each of these amines. A Hammett plot of log k3 versus sigma p exhibited a positive slope, which suggests that the oxidation of these amines by methylamine dehydrogenase proceeds through a carbanionic reaction intermediate. A negative slope was observed for the correlation between log Ks and sigma p. Plots of log k3 and log Ks against substituent constants which reflected either resonance or field/inductive parameters for each para substituent indicated that the magnitude of k3 was primarily influenced by field/inductive effects while Ks was primarily influenced by resonance effects. No correlation was observed between either k3 or Ks and the relative hydrophobicity of the para-substituted benzylamines or steric parameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

15.
The addition of saturating concentrations of NAD-+ and alcohol to liver alcohol dehydrogenase in a stopped flow fluorimeter results in a triphasic quenching of enzyme fluorescence. A rapid quenching occurs with a rate constant of 300 to 500 s-minus 1, followed by a slower reaction at 50 to 100 s-minus 1, and ultimately followed by a very slow reaction. The addition of NAD-+ to enzyme in the absence of substrate causes a rapid quenching of enzyme fluorescence at 300 to 500 s-minus 1, with the same amplitude as the rapid phase in the presence of substrate. These studies demonstrate that NAD-+ binding to liver alcohol dehydrogenase causes a conformational change at a rate compatible with the previously reported rate constant for proton release, indicating that proton release is probably coupled to the conformational change.  相似文献   

16.
Saccharopine dehydrogenase catalyzes the NAD-dependent oxidative deamination of saccharopine to l-lysine and α-ketoglutarate. Lysine 99 is within hydrogen-bond distance to the α-carboxylate of the lysine substrate and D319 is in the vicinity of the carboxamide side chain of NADH. Both are conserved and may be important to the overall reaction. Replacing K99 with M gives decreases of 110-, 80- and 20-fold in the V(2)/K(m) values for lysine, α-ketoglutarate and NADH, respectively. Deuterium isotope effects on V and V/K(Lys) increase, while the solvent deuterium isotope effects decrease compared to the C205S mutant enzyme. Data for K99M suggest a decreased affinity for all reactants and a change in the partition ratio of the imine intermediate to favor hydrolysis. A change in the bound conformation of the imine and/or the distance of the imine carbon to C4 of the nicotinamide ring of NADH is also suggested. Changing D319 to A decreases V(2)/K(NADH) by 33-fold. Primary deuterium and solvent deuterium isotope effects decrease compared to C205S suggesting a non-isotope sensitive step has become slower. NADH binds to enzyme first, and sets the site for binding of lysine and α-ketoglutarate. The slower step is likely the conformational change generated upon binding of NADH.  相似文献   

17.
18.
The increase in concentration of organic cosolvents results in a 2-2.5-fold increase of the maximal reaction rate and a decrease of Michaelis constant for formate of NAD(+)-dependent formate dehydrogenase from methylotrophic bacteria Pseudomonas sp. 101. These parameters, however, are not affected with the increase of ionic strength. For the logarithm of both Vmax and Km a linear function of the reciprocal of solvent dielectric permittivity was found. The decrease of Km is possibly due to the dielectric screening effect on the substrate binding energy. The increase in Vmax is explained by a model based on a solvent-dependent electrostatic image force, acting on the charges moved in the course of the catalytic step of the enzyme reaction.  相似文献   

19.
Pig heart lactate dehydrogenase was studied in the direction of pyruvate and NADH formation by recording rapid changes in extinction, proton concentration, nucleotide fluorescence and protein fluorescence. Experiments measuring extinction changes show that there is a very rapid formation of NADH within the first millisecond and that the amplitude of this phase (phase 1) increases threefold over the pH range 6-8. A second transient rate (phase 2) can also be distinguished (whose rate is pH-dependent), followed by a steady-state rate (phase 3) of NADH production. The sum of the amplitudes of the first two phases corresponds to 1mol of NADH produced/mol of active sites of lactate dehydrogenase. Experiments that measured the liberation of protons by using Phenol Red as an indicator show that no proton release occurs during the initial very rapid formation of NADH (phase 1), but protons are released during subsequent phases of NADH production. Fluorescence experiments help to characterize these phases, and show that the very rapid phase 1 corresponds to the establishment of an equilibrium between E(NAD) (Lactate) right harpoon over left harpoon H(+)E(NADH) (Pyruvate). This equilibrium can be altered by changing lactate concentration or pH, and the H(+)E(NADH) (Pyruvate) species formed has very low nucleotide fluorescence and quenched protein fluorescence. Phase 2 corresponds to the dissociation of pyruvate and a proton from the complex with a rate constant of 1150s(-1). The observed rate constant is slower than this and is proportional to the position of the preceding equilibrium. The E(NADH) formed has high nucleotide fluorescence and quenched protein fluorescence. The reaction, which is rate-limiting during steady-state turnover, must then follow this step and be involved with dissociation of NADH from the enzyme or some conformational change immediately preceding dissociation. Several inhibitory complexes have also been studied including E(NAD+) (Oxamate) and E(NADH) (Oxamate') and the abortive ternary complex E(NADH) (Lactate). The rate of NADH dissociation from the enzyme was measured and found to be the same whether measured by ligand displacement or by relaxation experiments. These results are discussed in relation to the overall mechanism of lactate dehydrogenase turnover and the independence of the four binding sites in the active tetramer.  相似文献   

20.
We succeeded in the crystallization of d(CGCGCG)2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2Fo-Fc map was much clear and easily traced. It is the first time monoamine co-crystallizes with d(CGCGCG)2. However, methylamine was not found from the complex crystal of d(CGCGCG)2 and methylamine. Five Mg ions were found around d(CGCGCG)2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg2+. DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG)2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号