首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Neuropeptide Y and sympathetic vascular control in man   总被引:7,自引:0,他引:7  
A parallel increase in systemic plasma levels of neuropeptide Y (NPY)-like immunoreactivity (LI) and noradrenaline (NA) was found during thoracotomy and surgery involving cardiopulmonary bypass in man. Thus, plasma levels of NPY-LI increased from 29 +/- 4 pmol/l before anaesthesia to 59 +/- 10 after thoracotomy and to 87 +/- 8 pmol/l upon cardiopulmonary bypass. The corresponding NA levels increased from 1.3 +/- 0.1 nmol/l before anaesthesia to 3.0 +/- 0.6 and 4.2 +/- 5 nmol/l after thoracotomy and cardiopulmonary bypass, respectively. A significant correlation was found between plasma levels of NPY-LI and NA during the operation but not between NPY-LI and adrenaline. The NPY-LI in human plasma was found to be similar to synthetic porcine NPY on reversed phase high performance liquid chromatography. Human submandibular arteries contained high levels of NPY-LI (24 +/- 3 pmol/g). In in vitro experiments on isolated human submandibular arteries, NPY in low concentrations (1000 pmol/l) was found to potentiate the contractile effects of NA or transmural nerve stimulation and to exert vasoconstrictor activity per se in higher concentrations. The calcium-entry antagonist nifedipine abolished both the NPY-induced contractions and the enhancement of NA-evoked contractions. NPY depressed the nerve stimulation-evoked 3H-NA release from human submandibular arteries via a prejunctional mechanism which was resistant to nifedipine. NPY contracted human mesenteric veins and renal arteries, but not mesenteric arteries. In conclusion, NPY seems to be co-released with NA upon sympathetic activation in man. Furthermore, NPY exerts both pre- and postjunctional effects on sympathetic control of human blood vessels.  相似文献   

2.
Summary Neuropeptide Y (NPY)-immunoreactive (IR) nerve fibres were found around both arteries and veins and in smooth muscle trabeculae of the cat spleen with the highest density on the arterial side. Considerably more tyrosine hydroxylase (TH)- and dopamine--hydroxylase (DBH)-positive than NPY-IR nerves were seen in the trabeculae and splenic capsule. The NPY-IR nerves in the spleen most likely originated in the coeliac ganglion, since (1) splanchnic nerve sectioning did not change the splenic NPY-IR nerves, (2) most neurones in the coeliac ganglion were NPY-IR, as well as DBH- and TH-positive, and (3) NPY-IR was transported axonally from the coeliac ganglion towards the spleen via the splenic nerve. Local NPY infusion in the isolated, blood-perfused cat spleen caused a marked increase in splenic vascular resistance and a small volume reduction. NA caused a comparatively larger reduction in splenic volume than NPY in addition to vasoconstriction. VIP-IR cell bodies in the coeliac ganglion were NPY- and TH-negative. VIP-IR nerves were seen both around the splenic artery and vein as well as around arterioles and within venous trabeculae of the spleen. VIP infusion caused reduction of splenic perfusion pressure (i.e. vasodilation) as well as an increase in splenic volume. Substance P-IR nerves, most likely of splanchnic afferent origin, were present in the coeliac ganglion around the splenic artery and arterioles of the spleen. Infusion of substance P induced marked reduction in perfusion pressure and a reduction in splenic volume. Enkephalin-immunoreactive nerves of splanchnic origin surrounded some TH- and NPY-positive, coeliac ganglion cells.It is concluded that several vasoactive peptides are located in splenic nerves. NPY is present in noradrenergic neurones and causes mainly increased vascular resistance. VIP occurs in non-adrenergic neurones of sympathetic origin and induces vasodilation and relaxation of the capsule. Finally, substance P is present in peripheral branches of spinal afferent nerves and causes vasodilation and capsule contraction. Stimulation of the splenic nerves may thus release several vasoactive substances in addition to noradrenaline, exerting a variety of actions.  相似文献   

3.
The effects of electrical stimulation of the stellate ganglia on the arterio-venous concentration differences of neuropeptide Y (NPY)-like immunoreactivity (LI) over the pig heart were studied in vivo in relation to changes in heart rate and left ventricular pressure. Furthermore, the effects of NPY on coronary vascular tone were analysed in vivo and in vitro. Stellate ganglion stimulation at a high frequency (10 Hz) caused a clear-cut, long lasting increase in plasma levels of NPY-LI in the coronary sinus compared to the aorta, suggesting release of this peptide from sympathetic terminals within the heart. The stimulation-evoked overflow of NPY-LI from the heart was enhanced about 3-fold by alpha-adrenoceptor blockade using phenoxybenzamine, suggesting that NPY release is under prejunctional inhibitory control by noradrenaline (NA). Combined alpha- and beta-adrenoceptor blockade abolished most of the positive inotropic response of the heart upon stellate ganglion stimulation, while a considerable positive chronotropic effect remained. After guanethidine treatment, stellate ganglion stimulation still produced a small positive inotropic and chronotropic effect on the heart. The stimulation evoked NPY overflow was markedly reduced by guanethidine indicating an origin from sympathetic nerve terminals. Injection of NPY into the constantly perfused left anterior descending artery in vivo caused a long lasting, adrenoceptor antagonist resistant increase in perfusion pressure, suggesting coronary vasoconstriction. NPY contracted coronary arteries in vitro via a nifedipine-sensitive mechanism. NA dilated coronary vessels both in vivo and in vitro via beta-adrenoceptor activation. It is concluded that sympathetic nerve stimulation increases overflow of NPY-LI from the heart suggesting release from cardiac nerves in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary Neuropeptide Y (NPY) is a recently discovered neuropeptide with vasoconstrictor effects when given in vivo. It occurs in many sympathetic neurons, where it appears to coexist with noradrenaline (NA). It is wellknown that profound changes in the levels of uterine NA occur in many species during pregnancy. Therefore we have investigated the distribution of catecholamine neurons and NPY by immunohistochemistry in the pregnant and nonpregnant guinea pig uterus. In the virgin uterus NPY-like immunoreactivity was present in nerve fibres and terminals in the smooth muscle layers of the uterine horns and around blood vessels. The distribution of NPY fibres was very similar to that of noradrenergic nerves visualized with antibodies against the catecholamine synthesizing enzyme tyrosine hydroxylase (TH). In the pregnant uterus, NPY- and TH-like immunoreactivity disappeared almost completely. In the cervix, a slight decrease of immunoreactivity was observed, whereas in the ovaries no changes were noted between the pregnant and nonpregnant condition. The results indicate that NPY and catecholamines coexists in the adrenergic neurons of the guinea pig uterus, cervix and ovary and that they vary together in the myometrium during pregnancy. We suggest that NPY may be of functional importance for the pregnant uterus.  相似文献   

5.
Neuropeptide Y (NPY) is a recently discovered neuropeptide with vasoconstrictor effects when given in vivo. It occurs in many sympathetic neurons, where it appears to coexist with noradrenaline (NA). It is wellknown that profound changes in the levels of uterine NA occur in many species during pregnancy. Therefore we have investigated the distribution of catecholamine neurons and NPY by immunohistochemistry in the pregnant and nonpregnant guinea pig uterus. In the virgin uterus NPY-like immunoreactivity was present in nerve fibres and terminals in the smooth muscle layers of the uterine horns and around blood vessels. The distribution of NPY fibres was very similar to that of noradrenergic nerves visualized with antibodies against the catecholamine synthesizing enzyme tyrosine hydroxylase (TH). In the pregnant uterus, NPY- and TH-like immunoreactivity disappeared almost completely. In the cervix, a slight decrease of immunoreactivity was observed, whereas in the ovaries no changes were noted between the pregnant and nonpregnant condition. The results indicate that NPY and catecholamines coexists in the adrenergic neurons of the guinea pig uterus, cervix and ovary and that they vary together in the myometrium during pregnancy. We suggest that NPY may be of functional importance for the pregnant uterus.  相似文献   

6.
Summary The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.  相似文献   

7.
The distribution of galanin (Gal) in sympathetic vascular neurons of adult and juvenile brush-tailed possums (Trichosurus vulpecula), was examined using double-labelling immunohistochemistry. This was compared with the distribution of neuropeptide Y (NPY) in the same tissues. Immunoreactivity (IR) to galanin was present in the majority (64-99%) of nerve cell bodies in paravertebral sympathetic ganglia, where it mostly co-existed with IR to the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH). Gal-IR also was present in most, if not all, TH-IR perivascular axons supplying systemic arteries and veins. NPY-IR was less common than Gal-IR in all sympathetic ganglia and perivascular axons examined. Some sympathetic, TH-IR axons supplying the abdominal aorta and renal artery contained both Gal-IR and NPY-IR, while TH-IR axons supplying cephalic and thoracic vessels contained Gal-IR but not NPY-IR. Limited observations on sympathetic neurons in two species of wallabies indicated that Gal-IR also was more common than NPY-IR in other marsupial species, but the incidence of NPY-IR was higher in these wallabies than in the brush-tailed possum. Together with previous studies, this work suggests that the coexistence of galanin and NPY may be the primitive condition for sympathetic neurons in tetrapods. The differential expression of these peptides in specific populations of sympathetic neurons may have important functional consequences in the autonomic control of the circulation.  相似文献   

8.
Human omental arteries and veins are supplied with nerve fibers containing noradrenaline (NA) and neuropeptide Y (NPY); these two agents probably co-exist in perivascular sympathetic nerve fibers. Substance P (SP)- or vasoactive intestinal peptide (VIP)-containing fibers could not be detected. In studies on isolated omental vessels NA produced constriction. The results of blockade experiments suggest that human omental arteries are equipped predominantly with alpha 1-adrenoceptors and omental veins with a mixture of alpha 1- and alpha 2-adrenoceptors. NPY at a concentration of 10(-7) M or higher had a weak contractile effect on veins and virtually no effect on arteries. NPY at a concentration of 3 X 10(-8) M shifted the NA concentration response curve to the left in arteries (pD2 = 5.8 for NA versus 6.6. for NA in the presence of NPY; P less than 0.001) but not in veins. Both SP and VIP relaxed arteries precontracted with NA or prostaglandin F2 alpha (PGF2 alpha). The potency of SP as a relaxant agent was similar in arteries and veins; the effect of VIP was elicited at lower concentrations in veins than in arteries.  相似文献   

9.
Immunoreactive neuropeptide Y (NPY) was demonstrated in neuronal elements in the urinary bladder wall of the newborn guinea pig. Numerous intramural ganglia were found lying among the smooth muscle bundles and in the submucosa, and NPY-like immunoreactive nerve cell bodies were demonstrated within all of these ganglia. Nerve fibres containing NPY were also richly distributed in the detrusor muscle, submucosa and around blood vessels. In dissociated cell cultures from newborn guinea pig detrusor muscle, a subpopulation (70-85%) of both mononucleate and binucleate intramural neurones was shown to contain NPY-like immunoreactivity. A low percentage (1-6%) of the intramural bladder neurones contained dopamine-beta-hydroxylase. In conclusion, while some NPY-containing nerve fibres in the wall of the bladder are of sympathetic origin, especially those supplying blood vessels, the results of this present study establish that many of these NPY-containing nerve fibres originate from non-adrenergic cell bodies within the intramural bladder ganglia.  相似文献   

10.
Summary The innervation of the major arteries and heart of the toad (Bufo marinus) was examined by use of glyoxylic acid-induced catecholamine fluorescence and peptide immunohistochemistry. All arteries possessed a moderate to dense plexus of adrenergic axons, which also showed neuropeptide Y-like immunoreactivity (NPY-LI). Some adrenergic axons in the intracardiac vagal trunks showed NPY-LI, but the varicose adrenergic axons innervating the cardiac muscle of the atria and ventricle, and the coronary blood vessels did not display NPY-LI. About half of the nerve cell bodies in the anterior sympathetic chain ganglia with dopamine--hydroxylase-LI (DBH-LI) also contained NPY-LI. The nerve cell bodies with DBH-LI alone were generally larger (median diameter 30 m) than those with both DBH-LI and NPY-LI (median diameter 20 m). Some cell bodies showing DBH-LI alone were surrounded by boutons with NPY-LI but not DBH-LI. Axons that displayed simultaneously both substance P-LI (SP-LI) and calcitonin gene-related peptide-LI (CGRP-LI) also formed a plexus around all arteries studied, being particularly dense around the mesenteric and pulmonary arteries. These axons are most likely sensory since SP-LI was reduced by capsaicin treatment, and nerve cell bodies with both SP-LI and CGRP-LI were found in dorsal root ganglia and the vagal ganglion. A dense plexus of axons showing somatostatin-LI was located around the pulmonary artery and its main intrapulmonary branches. A few nerves with vasoactive intestinal polypeptide-LI were found around the dorsal aorta and pulmonary artery. No perivascular nerves with enkephalin-LI were observed. Reversed-phase, high-pressure liquid chromatography of acid extracts of the large arteries showed that the major peaks of NPY-LI and SP-LI coeluted with porcine NPY (1–36) and synthetic SP (1–11), respectively. Thus, the location and structure of these peptides in perivascular nerves has been highly conserved during vertebrate evolution.  相似文献   

11.
Neuropeptide Y1 receptors in the rat genital tract   总被引:2,自引:0,他引:2  
Using in situ hybridization and immunohistochemistry, the expression of type 1 neuropeptide Y (NPY) receptors (Y1-Rs) has been demonstrated in the rat genital tract. In the male Y1-R mRNA and Y1-R-like immunoreactivity (LI) were found in smooth muscles of predominantly arterioles and small arteries inside testis. Fibers showing NPY-LI could not be detected within testis but only in the tunica albuginea. These Y1-Rs are suggested to mediate vasoconstriction, possibly activated by NPY released from nerves in the tunica albuginea. In the female rat Y1-R mRNA, but not Y1-R-LI was found in vascular smooth muscles of arteries in the ovary and oviduct. In the oviduct Y1-R mRNA was also detected in the non-vascular smooth muscle layer. Fibers showing NPY-LI were found around blood vessels both in the ovary and oviduct. In the female genital tract also Y1-Rs may thus be involved in regulatory mechanisms mediating, for example, vasoconstriction.  相似文献   

12.
By means of immunohistochemistry and radioimmunoassay (RIA), we have investigated the possible occurrence of somatostatin (SOM)-like immunoreactivity (-LI) in the autonomic innervation of the pig nasal mucosa. SOM-immunoreactive (-IR) fibres were present around nasal arteries, arterioles and venous sinusoids. Double-labelling experiments revealed that SOM-LI was co-localized with the noradrenaline (NA) markers tyrosine hydroxylase and dopamine-β-hydroxylase as well as with neuropeptide Y (NPY) in a subpopulation of neurons in the superior cervical sympathetic ganglion and in perivascular nerve terminals. Furthermore, SOM-LI was also present in perivascular fibres containing vasoactive intestinal polypeptide (VIP) and NPY of presumably parasympathetic origin. The parasympathetic fibres that were associated with glands contained peptide histidine isoleucine (PHI), VIP and NPY but not SOM, suggesting that in the nasal mucosa SOM-IR is restricted to perivascular nerves. As revealed by RIA, the content of SOM-LI in biopsies of both nasal mucosa and superior cervical sympathetic ganglion was about 12 pmol/g and the reverse phase HPLC characterisation of SOM-LI shown two separate peaks for SOM-28 and SOM-14.  相似文献   

13.
Possible relationships between the density of peptide innervation and the contractile response of rat cerebral arteries to exogenously applied neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) were examined. The effects of NPY on membrane potential and reactivity of cerebral arteries to exogenous norepinephrine also were studied. In normally innervated arteries there was no apparent correlation between degree of innervation and response to NPY. Marked, prolonged tachyphylaxis to NPY and VIP was observed following brief exposure to these peptides. Surgical removal of the superior cervical ganglia or the sphenopalatine ganglia greatly reduced and, in some cases, eliminated NPY- or VIP-immunoreactive perivascular nerves from cerebral arteries. However, responses of denervated middle cerebral arteries to exogenous NPY or VIP were not different from responses of innervated arteries. Doses of NPY that induced maximal contraction caused no change in membrane potential of the middle cerebral artery. NPY also did not alter the response of cerebral arteries to exogenous norepinephrine. Finally, electrical stimulation of normal or denervated arteries caused only minor constrictor or dilator responses. These results do not support a substantial role for peptidergic perivascular nerves in regulation of pial arterial contractility in the rat.  相似文献   

14.
Summary The localization and origin of substance P (SP)-, neuropeptide Y (NPY)-, and noradrenaline/tyrosine hydroxylase (NA/TH)-immunoreactive (IR) nerves in the guinea-pig heart were investigated by means of immunohistochemistry; quantitative analysis was performed by radioimmunoassay (NPY) and high performance liquid chromatography (NA). Both untreated animals and animals subjected to stellatectomy, combined stellatectomy and local capsaicin pretreatment of the vagal nerves or systemic application of capsaicin were studied. A dense network of SP-IR nerves was observed in the right atrium in different locations: (1) around local cardiac ganglion cells, (2) close to blood vessels, (3) within the myocardium, and (4) close to and within peri and endocardium.A moderately dense SP-innervation, mainly related to blood vessels, was found in the ventricles. Very dense networks of NPY and TH-IR nerve fibers with an overlapping distributional pattern around blood vessels and in the myocardium were seen in both the atria and the ventricles. In addition, some cell bodies in local cardiac ganglia were NPY-IR. Bilateral stellatectomy resulted in a reduction of SP-IR in the right atrium (55% of control), which was more pronounced after additional capsaicin pretreatment of the vagal nerves (44% of control).In the left ventricle no significant depletion of SP-IR was seen by either stellatectomy or combined stellatectomy and capsaicin treatment of the vagal nerves. It was not possible to establish any defined target areas within the heart for vagal or spinal SP-IR afferents by use of immunohistochemical methods. Systemic capsaicin treatment caused a total loss of SP-IR nerves in the heart. After bilateral stellatectomy the levels of NPY-IR and NA were reduced to about 10% of control in both the right atrium and left ventricle. In accordance, NPY and TH-IR nerves were also almost totally absent in the heart after bilateral stellatectomy.  相似文献   

15.
The influence of pregnancy on the density and pattern of the peptidergic innervation of the guinea pig uterine artery was studied. Whole mount stretch preparations of the uterine artery from estrus and late pregnant guinea pigs were processed for the immunohistochemical demonstration of neuropeptide Y (NPY)-, vasoactive intestinal polypeptide (VIP)-, calcitonin gene-related peptide (CGRP)- and substance P (SP)- immunoreactive nerve fibres. In late pregnancy the density of NPY- and CGRP- containing nerve fibres was remarkably decreased, while that of VIP- and SP- immunoreactive nerves showed a moderate reduction. The meaning and the possible physiological relevance of the decreased density of peptide-immunoreactive nerves in the uterine artery in late pregnancy are discussed.  相似文献   

16.
The cutaneous nerves of rat, cat, guinea pig, pig, and man were studied by immunocytochemistry to compare the staining potency of general neural markers and to investigate the density of nerves containing peptides. Antiserum to protein gene product 9.5 (PGP 9.5) stained more nerves than antisera to neurofilaments, neuron-specific enolase (NSE), and synaptophysin or histochemistry for acetylcholinesterase (AChE). Peptidergic axons showed species variation in density of distribution and were most abundant in pig and fewest in man. However, the specific peptides in nerves innervating the various structures were consistent between species. Nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP) and/or vasoactive intestinal polypeptide (VIP) predominated in all the species; those immunoreactive to tachykinins (substance P and neurokinin A [NKA]) and neuropeptide tyrosine (NPY) were less abundant. Neonatal capsaicin, at the doses employed in this study, destroyed approximately 70% of CGRP- and tachykinin-immunoreactive sensory axons; whereas 6-hydroxydopamine (6-OHDA) at the doses employed resulted in a complete loss of NPY and tyrosine hydroxylase (TH) immunoreactivity without affecting VIP, CGRP, and tachykinins. Thus, this study confirms that antiserum to PGP 9.5 is the most suitable and practical marker for the demonstration of cutaneous nerves. Species differences exist in the density of peptidergic innervation, but apparently not for specific peptides. Not all sensory axons immunoreactive for CGRP and substance P/NKA are capsaicin-sensitive. However, all sympathetic TH- and NPY-immunoreactive axons are totally responsive to 6-OHDA; but no change was seen in VIP-immunoreactive axons, suggesting some demarcation of cutaneous adrenergic and cholinergic sympathetic fibers.  相似文献   

17.
18.
C Heym  R Webber  M Horn  W Kummer 《Histochemistry》1990,93(5):547-557
Tyrosine hydroxylase (TH)- and peptide-immunoreactivity of postganglionic neurons and of nerve fibres in guinea pig lumbar paravertebral sympathetic ganglia 2-4 after transection of the communicating rami and the visceral branches, respectively, were investigated by single- and double-labelling techniques. Six subpopulations of postganglionic neurons were discriminated immunohistochemically: two cell types, which were immunoreactive to only one of the applied antisera - TH, and vasoactive intestinal polypeptide (VIP); and four cell types in which immunoreactivity was colocalized - TH/neuropeptide Y (NPY), NPY/VIP, dynorphin/alpha-neoendorphin and dynorphin (alpha-neoendorphin)/NPY. Small intensely fluorescent (SIF) cells dependent on their location exhibited differential immunobehaviour to NPY-/dynorphin-(alpha-neoendorphin-) and TH-antisera. Immunoreactivity to substance P (SP), calcitonin gene-related peptide (CGRP), met-enkephalin-arg-phe (MEAP) and leu-enkephalin was present in nerve fibres but not in postganglionic neurons with frequent colocalization of SP/CGRP- and MEAP/leu-enkephalin- and, sometimes leu-enkephalin/SP- and dynorphin/SP-immunoreactivity. TH-immunoreactive intraganglionic nerve fibres were numerically more increased after cutting the visceral branches, than after transection of the communicating rami. Vice versa, NPY-, VIP-, dynorphin- and alpha-neoendorphin-immunoreactive nerve fibres were particularly increased in number after cutting the communicating rami. Many but not all of the nerve fibres exhibited colocalization of two of these peptides. SP-, CGRP-, and enkephalin-immunoreactive nerve fibres were not visibly affected by cutting the visceral branches but virtually disappeared after lesioning the communicating rami.  相似文献   

19.
The sympathetic nerve fibers originating from the superior cervical ganglia and supplying the pineal gland play the most important role in the control of the pineal activity in mammals. NPY and CPON are also present in the majority of the pinealopetal sympathetic neurons. In this study, immunohistochemical techniques were used to demonstrate the existence and coexistence of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH) as well as NPY and CPON in the nerve fibers supplying the chinchilla pineal gland. Ten two-year-old female chinchillas housed in natural light conditions were used in the study. The pineals were fixed by perfusion. ABC immunohistochemical technique and immunofluorescence labelling method were employed. TH-immunoreactive (TH-IR) varicose nerve fibers were observed in the pineal gland as well as in the posterior commissural area. Within the chinchilla pineal gland, TH-IR nerve fibers were located in the capsule and connective tissue septa. Numerous varicose TH-IR branches penetrated into the parenchyma and formed a network showing the highest density in the proximal region of the gland. In the central and distal parts of the pineal parenchyma, a subtle network, composed of thin varicose nerve branches, was observed. Double immunostaining revealed that the majority of TH-IR nerve fibers was positive for DbetaH or NPY. TH- and DbetaH-positive neuron-like cells were observed in the proximal region of the gland. The pattern of pineal innervation immunoreactive to CPON was similar to the innervation containing NPY, TH and DbetaH. The chinchilla intrapineal innervation containing TH, DbetaH, NPY and CPON is characterized by the higher density in the proximal part of the gland than in the middle and distal ones. The specific feature of the chinchilla pineal is also the presence of single TH/DbetaH-immunoreactive neuron-like cells in the proximal part of the gland.  相似文献   

20.
Summary The subcellular distribution of noradrenaline (NA), neuropeptide Y (NPY), Met and Leu-enkephalin (ENK), substance P (SP), somatostatin (SOM), and vasoactive intestinal polypeptide (VIP) was investigated in homogenates of bovine splenic nerve. The distribution of noradrenergic peptide-containing nerves in the bovine celiac ganglion, splenic nerve and terminal areas in spleen was studied by indirect immunofluorescence histochemistry using antisera to tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), NPY, enkephalin peptides, SP, SOM, VIP and peptide HI (PHI).After density gradient centrifugation, high levels of NPY and ENK-like immunoreactivity (LI) were found in high-density gradient fractions, coinciding with the main NA peak. SP, SOM and VIP were found in fractions with a lower density, VIP being also enriched in a heavy fraction; the latter three peptides were present in low concentrations.Immunohistochemistry revealed that staining for NPYLI and ENK-LI partly overlapped that for TH and DBH in celiac ganglia, splenic nerve axons and terminal areas of spleen. Almost all principal ganglion cells were TH- and DBH-immunoreactive. Many were also NPY-immunoreactive, whereas a smaller number were ENK-positive. In the celiac ganglion patches of dense SP-positive networks and some VIP/PHI- and ENK-immunoreactive fibers were seen around cell bodies.The results indicate that NPY and ENK are stored with NA in large dense-cored vesicles in unmyelinated axons of bovine splenic nerve. SP, SOM and VIP appear in different organelles in axon populations separate from sympathetic noradrenergic nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号