首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Radioautography of tritiated diprenorphine in rat brain indicates anatomic distribution of receptors with a greater degree of precision than is possible using dissection techniques. The results of this study largely confirm those of others but indicate some differences in receptor distribution in the thalamus. Differential receptor binding in the periaquaductal gray matter with the highest counts lying laterally is an original observation.  相似文献   

2.
3H-N-methylspiperone (3H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of 3H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of 3H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1,000 micrograms/kg. Between 0.01 and 10 micrograms/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of 3H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 receptors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to 3H-spiperone, 3H-NMSP results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and displays more than a two-fold higher brain uptake.  相似文献   

3.
Lesioning of the rat striatum with kainic acid may provide a useful animal model with which to study Huntington's Disease since, in both situations, changes in several neurochemical parameters appear similar. In this study, we examined the time course of dopaminergic (DA) and muscarinic cholinergic (MCHOL) receptor alterations after kainic acid injection into the rat striatum. As early as two days after unilateral, intrastriatal injection of kainic acid, most striatal perikaya in the injected area had been destroyed as seen by histological examination. A progressive decrease in the DA and MCHOL receptors continued which was not due to changes in their affinity for their respective receptors. By 48 days after injection, there was about 75% decrease in DA receptors and about a 65% decrease in MCHOL receptors. The DA receptor loss is similar in extent to the reported loss in activity of striatal, dopamine-stimulated adenylate cyclase after kainic acid lesion. The DA and MCHOLreceptor loss is similar to the reported loss of neostriatal DA and MCHOL receptors in Huntington's Disease.  相似文献   

4.
Endogenously occurring opioid peptides are rapidly metabolized by different ectopeptidases. Human opiorphin is a recently discovered natural inhibitor of the enkephalin-inactivating neutral endopeptidase (NEP) and aminopeptidase-N (AP-N) (Wisner et al., 2006). To date, in vitro receptor binding experiments must be performed either in the presence of a mixture of peptidase inhibitors and/or at low temperatures, to block peptidase activity. Here we demonstrate that, compared to classic inhibitor cocktails, opiorphin dramatically increases the binding of [(3)H]MERF and [(3)H]MEGY ligands to rat brain membrane preparations. We found that at 0°C the increase in specific binding is as high as 40-60% and at 24°C this rise was even higher. In contrast, the binding of the control [(3)H]endomorphin-1, which is relatively slowly degraded in rat brain membrane preparations, was not enhanced by opiorphin compared to other inhibitors. In addition, in homologous binding displacement experiments, the IC(50) affinity values measured at 24°C were also significantly improved using opiorphin compared to the inhibitor cocktail. In heterologous binding experiments the differences were less obvious, but still pronounced using [(3)H]MERF and MEGY compared to dynorphin(1-11), or naloxone and DAGO competitor ligands.  相似文献   

5.
The binding of 3H-SCH 23390 was studied in vivo in the mouse brain. The binding was saturable, reversible and stereospecific. The level of nonspecific binding was 5-15% of total binding. Pharmacological characterization revealed binding of 3H-SCH 23390 to D1 receptors. Thus, dopaminergic antagonists known to possess D1 affinity, e.g., SCH 23390 itself, cis-flupentixol and (+)-butaclamol, were potent inhibitors of the 3H-SCH 23390 binding. On the other hand, high doses of D2 selective compounds were required to inhibit the 3H-SCH 23390 binding. These results indicate that 3H-SCH 23390 is a ligand of choice for in vivo studies of D1 receptors.  相似文献   

6.
Heterogeneity of D2 dopamine receptors in different brain regions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen.  相似文献   

7.
In vivo biodistribution of S- and R-isomers of [125I]IBZM in rats showed a significant initial brain uptake (3.20 and 2.67% dose/organ at 2 min, respectively). The wash-out from the brain was slower for the S-isomer. The striatum to cerebellum ratio for [125I]S-IBZM decreased with an increasing dose of cold carrier or spiperone, suggesting that the brain uptake is stereospecific and saturable, and may be related to the binding of D-2 dopamine receptors. In a dual isotope digital autoradiography study [125I]IBZM and [3H]NMSP(N-methylspiperone) show comparable regional cerebral distribution in rats.  相似文献   

8.
9.
10.
Thein vivo effect of the mu agonist morphine and antagonist naloxone on [3H]nimodipine receptor binding in rat brain regions has been investigated. Morphine administration (15 mg/s.c.) for thirty minutes produced a 19% decrease in [3H]nimodipine receptor binding (B max 158.2 fmol to 128.9 fmol) in cortex and 29% decrease in cerebellum (65.3 fmol to 46.0 fmol). Lesser changes were observed in hippocampal and striatal regions with no changes in hypothalamus and brain stem. All effects were completely antagonized by naloxone pretreatment (1 mg/kg). The studies suggest that opiates in vivo can alter [3H]nimodipine binding to the Ca2+ channel receptor protein. These findings agree with the previously observed decreases in Ca2+ influx in nerve ending preparations and inhibition of ICa 2+ following opiate treatment and suggest opiates reduce Ca2+-dependent neurotransmitter release by altering the Ca2+ channel receptor protein in an allosteric fashion.  相似文献   

11.
12.
Using radioenzymatic assay procedures, we have measured picomolar amounts of endogenous norepinephrine (NE) and dopamine (DA) released in vitro. The release of NE and DA in response to KCl stimulation was examined in 6 brain regions: cortex, hippocampus, hypothalamus, striatum, combined accumbens-olfactory tubercle, and substantia nigra. NE release was detectable in all regions except striatum. Amounts of NE released by 55mM KCl (expressed as % control) were: cortex (313%), hippocampus (227%), hypothalamus (225%), accumbens-tubercle (278%), s. nigra (155%). KCl stimulated release of DA was detected in 3 regions: striatum (414%), accumbenstubercle (282%), and hypothalamus (312%). DA was measurable in filtrates from the s. nigra but levels in control and KCl stimulated samples were equal. Release of NE and DA was also measured in 12 brain regions after incubation of tissue in vitro with 10?4M d-amphetamine sulfate. d-Amphetamine stimulated NE outflow when compared to controls in all regions examined. DA outflow was markedly increased in most regions, especially striatum (287%), hypothalamus (387%) and accumbens-tubercle (670%). d-Amphetamine doubled endogenous DA outflow from the s. nigra.  相似文献   

13.
Circadian rhythms were measured in alpha 1-, alpha 2- and beta-adrenergic, acetylcholine muscarinic (ACh), and benzodiazepine (BDZ) receptor binding in small regions of rat brain. Rhythms in alpha 1-receptor binding were measured in olfactory bulb, frontal, cingulate, piriform, parietal, temporal and occipital cortex, hypothalamus, hippocampus, pons-medulla, caudate-putamen and thalamus-septum. No rhythm was found in cerebellum. Rhythms in alpha 2-receptor binding were measured in frontal, parietal and temporal cortex, and pons-medulla. No rhythm was found in cingulate, piriform or occipital cortex, or hypothalamus. Rhythms in binding to beta-receptors were measured in olfactory bulb, piriform, insular, parietal and temporal cortex, hypothalamus and cerebellum. No rhythms were found in frontal, entorhinal, cingulate, or occipital cortex, hippocampus, caudate-putamen, or pons-medulla. Rhythms in ACh receptor binding were measured in olfactory bulb, parietal cortex and caudate-putamen. No rhythms were found in frontal or occipital cortex, nucleus accumbens, hippocampus, thalamus-septum, pons-medulla or cerebellum. Rhythms in BDZ receptor binding were measured in olfactory bulb, olfactory and occipital cortex, olfactory tubercle, nucleus accumbens, amygdala, caudate-putamen, hippocampus and cerebellum. No rhythms were found in parietal cortex, pons-medulla or thalamus-septum. The 24-hr mean binding to receptors varied between 3- and 10-fold, the highest in cortex and the lowest, usually, in cerebellum. The piriform cortex was particularly high in alpha 1- and alpha 2-adrenergic receptors; the nucleus accumbens and caudate, in ACh receptors; and the amygdala, in BDZ receptors. Most adrenergic and ACh receptor rhythms peaked in subjective night (the period when lights were off under L:D conditions), whereas most BDZ receptor rhythms peaked in subjective day (the time lights were on in L:D). Perhaps in the rat, a nocturnal animal, the adrenergic and ACh receptors mediate activity and the functions that accompany it, and the BDZ receptors mediate rest, and with it, sleep.  相似文献   

14.
2-Fluoronorepinephrine (IC50 ≈0.7 μM) is a relatively selective ligand for displacement of radioactive dihydroalprenolol from β1-adrenergic receptors in membrane preparations from rat cerebral cortex. It is less potent (IC50 ≈10 μM) in displacing dihydroalprenolol from β2-adrenergic receptors in rat cerebellar membranes and in displacing clonidine from α2-adrenergic receptors in rat cerebral cortical membranes. It is much less potent (IC50 > 100 μM) in displacing WB-4101 from α1-adrenergic receptors in rat cerebral cortical membranes. In contrast, 6-fluoronorepinephrine is relatively selective for α-adrenergic receptors, being at least 50–200 times more potent at such receptors than at β-adrenergic receptors. 5-Fluoronorepinephrine like norepinephrine does not exhibit remarkable selectivity towards α- and β-adrenergic receptors. The 2-, 5- and 6-fluorodopamines are more potent ligands at α1-adrenergic receptors than at α2- and β-adrenergic receptors but the specificity is not markedly affected by the position of the fluorine substituent. The results suggest that the specificity exhibited by the 2- and 6-fluoronorepinephrine at adrenergic receptors is not primarily due to fluorine-induced changes in the physicochemical properties of the aromatic ring, but instead to stereoselective interactions of the ethanolamine side chain of norepinephrine with fluorine at either the 2- or 6-ring positron. The fluorodopamines like dopamine itself are more potent at dopaminergic than at α- or β-adrenergic receptors. The 2-, 5- and 6-fluorodopamines are all nearly equipotent with dopamine in the displacement of radioactive spiroperidol from dopaminergic receptors in membrane preparations from rat striatum, while the 2- and 6-fluorodopamine are somewhat less potent than dopamine or 5-fluorodopamine in displacement of radioactive apomorphine in striatal membranes.  相似文献   

15.
The hypothesis that psychotomimetics induce a rapid dopamine receptor regulation that could participate in the expression of the brain dopaminergic overactivation and in the early signs of psychotic-like behaviour, was checked by radioligand binding on rat brain cryosections. For this purpose, subchronic 7-day-d-amphetamine pretreatment was combined with acute amphetamine, phencyclidine or LSD challenge. Acute application of psychotomimetics affected only striatal and accumbens but not nigral and olfactory dopamine receptor binding after 40 min, while subchronic amphetamine expressed no effect, as revealed by two-way ANOVA. Post-hoc statistical analysis showed that only striatal and accumbens[3H]SCH 23390 binding decrease (10-12%) following phencyclidine and striatal [3H]spiperone binding increase (11%) after acute amphetamine were significant. It is assumed that such moderate dopamine receptor binding changes probably reflect the fast receptor regulation responses without important influence on a proposed drug-induced dopaminergic overactivity. The registered alterations of D1 receptor binding after phencyclidine are suggested to be capable to modify the activity of some other neural pathways in the basal ganglia and thus participate in a psychotic-like behaviour.  相似文献   

16.
Sarafotoxin-b, a potent snake vasoconstrictor peptide homologous to the mammalian endothelial vasoconstrictor endothelin, induces phosphoinositide (PI) hydrolysis in various brain regions of the rat. Sarafotoxin-b induced PI hydrolysis is largely independent of extracellular Ca2+ and is detected in all brain regions where toxin-binding sites are found. These results point to the existence of a hitherto undetected neuroreceptor associated with the PI cycle.  相似文献   

17.
K S Funatsu  K Inanaga 《Peptides》1987,8(2):319-325
Nanomolar concentration of thyrotropin-releasing hormone (TRH) in vitro caused a significant reduction of [3H]apomorphine binding sites (70% of the control) in the rat striatum and the limbic forebrain. [3H]Spiperone binding was not affected by TRH. On the other hand, dopamine and apomorphine displaced [3H]TRH binding partially, suggesting the presence of a TRH receptor subpopulation that has a high affinity for dopamine agonist. Most of the neuroleptics displaced [3H]TRH binding dose-dependently in the micromolar range. (-)-Sulpiride had no affinity to TRH receptors. These findings suggest that one of the important roles of TRH as a neuromodulator is to modulate receptors for classical neurotransmitters, and this receptor-receptor interaction may be of importance in explaining the well known stimulating effects of TRH on the dopaminergic system.  相似文献   

18.
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.  相似文献   

19.
There has arisen considerable interest in the study of dopamine D2/3 agonist binding sites by positron emission tomography (PET), based on the claim that agonist sites represent a functional subset of the total number of sites labeled by more conventional antagonist ligands. To test the basis of this claim, we used quantitative autoradiography to measure the abundance of binding sites of a dopamine D2/3 agonist ([3H]NPA) and an antagonist ([3H]raclopride) in cryosections of rat brain. Saturation binding studies revealed that the Bmax for [3H]NPA was nearly identical to that of [3H]raclopride in dorsal brain regions, but was 25% less in the ventral striatum and 56% less in the olfactory tubercle. We also tested the displacement of the two ligands by the hallucinogen LSD, which is known to have dopamine agonist properties. Whereas displacement of [3H]raclopride by increasing LSD concentrations was monophasic, displacement of [3H]NPA was biphasic, suggesting an action of LSD via a subset of dopamine D2/3 agonist binding sites. Addition of the stable GTP analogue Gpp(NH)p to the medium abolished 90% of the [3H]NPA binding, and increased [3H]raclopride binding by 10%, with a shift to the right in the LSD competition curve, suggesting retention of endogenous dopamine in washed cryostat sections. Thus [3H]NPA and [3H]raclopride binding sites have nearly identical abundances in rat dorsal striatum, but are distinct in the ventral striatum, and with respect to their displacement by LSD.  相似文献   

20.
The effect of Soman, Sarin and Vx, known potent cholinesterase inhibitors, on the binding of several neurotransmitter receptors in various regions of brain was studied. Vx, exhibited considerable inhibition of binding of 3H-N-methylscopolamine (3H-NMS) to muscarinic receptors and of 3H-spiperone to dopamine D2 receptors in the striatum. 3H-NMS binding was 50% inhibited at 10(-6)M and 90% at 10(-3)M Vx. Inhibition of 3H-spiperone binding by Vx in striatum had an ID50 of 10(-5)M. KD of the treatment was affected more than Bmax. Binding inhibition of both 3H-NMS and 3H-spiperone in post-mortem brain of rats pre-treated with Vx confirmed the specificity of the organophosphates effect, since other organophosphates and ligands failed to show any activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号