首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATF2 gene, which encodes alcohol acetyltransferase II (AATase II), was cloned from Saccharomyces cerevisiae Kyokai No. 7 (sake yeast). The ATF2 gene coded for a protein of 535 amino acid residues with a calculated molecular mass of 61,909 daltons. The deduced amino acid sequences of the ATF2 showed 36.9% similarity with that of ATF1, which encodes AATase I. The hydrophobicity profiles for the Atf2 protein and Atf1 protein were similar. A transformant carrying multiple copies of the ATF2 gene had 2.5-fold greater AATase activity than the control, and this activity was not significantly inhibited by linoleic acid. A Southern analysis of the yeast genomes in which the ATF2 gene was used as a probe showed that S. cerevisiae and brewery lager yeast have one ATF2 gene, while S. bayanus has no similar gene.  相似文献   

2.
3.
ACR1, a yeast ATF/CREB repressor.   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

4.
The ATF1-encoded Saccharomyces cerevisiae yeast alcohol acetyl transferase I is responsible for the formation of several different volatile acetate esters during fermentations. A number of these volatile esters, e.g. ethyl acetate and isoamyl acetate, are amongst the most important aroma compounds in fermented beverages such as beer and wine. Manipulation of the expression levels of ATF1 in brewing yeast strains has a significant effect on the ester profile of beer. Northern blot analysis of ATF1 and its closely related homologue, Lg-ATF1, showed that these genes were rapidly induced by the addition of glucose to anaerobically grown carbon-starved cells. This induction was abolished in a protein kinase A (PKA)-attenuated strain, while a PKA-overactive strain showed stronger ATF1 expression, indicating that the Ras/cAMP/PKA signalling pathway is involved in this glucose induction. Furthermore, nitrogen was needed in the growth medium in order to maintain ATF1 expression. Long-term activation of ATF1 could also be obtained by the addition of the non-metabolisable amino acid homologue beta-L-alanine, showing that the effect of the nitrogen source did not depend on its metabolism. In addition to nutrient regulation, ATF1 and Lg-ATF1 expression levels were also affected by heat and ethanol stress. These findings help in the understanding of the effect of medium composition on volatile ester synthesis in industrial fermentations. In addition, the complex regulation provides new insights into the physiological role of Atf1p in yeast.  相似文献   

5.
The inheritance of mtDNA in lager brewing strains   总被引:1,自引:0,他引:1  
In this work, we compared the mtDNA of a number of interspecific Saccharomyces hybrids (Saccharomyces cerevisiae x Saccharomyces uvarum and S. cerevisiae x Saccharomyces bayanus) to the mtDNA of 22 lager brewing strains that are thought to be the result of a natural hybridization between S. cerevisiae and another Saccharomyces yeast, possibly belonging to the species S. bayanus. We detected that in hybrids constructed in vitro, the mtDNA could be inherited from either parental strain. Conversely, in the lager strains tested, the mtDNA was never of the S. cerevisiae type. Moreover, the nucleotide sequence of lager brewing strains COXII gene was identical to S. bayanus strain NBRC 1948 COXII gene. MtDNA restriction analysis carried out with three enzymes confirmed this finding. However, restriction analysis with a fourth enzyme (AvaI) provided restriction patterns for lager strains that differed from those of S. bayanus strain NBRC 1948. Our results raise the hypothesis that the human-driven selection carried out on existing lager yeasts has favored only those bearing optimal fermentation characteristics at low temperatures, which harbor the mtDNA of S. bayanus.  相似文献   

6.
The reduction of acetate ester synthesis by aeration and the addition of unsaturated fatty acids to the medium has been reported to be the result of the reduction in alcohol acetyltransferase (AATase) activity induced by inhibition of this enzyme. However, regulation of the AATase gene ATF1 has not been reported. In this study, ATF1 gene expression was studied by Northern analysis, and the results showed that the ATF1 gene was repressed both by aeration and by unsaturated fatty acids. The results also showed that the reduction of AATase activity is closely related to the degree of repression of ATF1 mRNA, which suggested that the gene repression is the primary means of reducing AATase activity in vivo. Using the Escherichia coli lacZ gene as a reporter gene, it was shown that a 150-bp fragment of the 5' flanking sequence played a major role in the repression by aeration and unsaturated fatty acid addition.  相似文献   

7.
Ageing in Saccharomyces cerevisiae is a finite phenomenon, determined by replicative, rather than chronological lifespan. Yeast physiological condition is known to influence industrial fermentation performance, however, until recently cellular senescence has not been considered as a brewing yeast stress factor. A polyploid lager yeast (BB11) and a brewery isolate, exhibiting petite mutation were analysed for longevity. It was observed that mitochondrial deficiency induced a reduction in lifespan. In addition, replicative capacity was perceived to be dependent on environmental conditions.  相似文献   

8.
9.
The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling.  相似文献   

10.
The CDC6 gene product is required for entering the S phase of the cell cycle in Saccharomyces cerevisiae. It has been isolated on recombinant plasmids by selection for complementation of temperature-sensitive alleles with a yeast genomic library. The entire complementing activity is carried on a 1.8-kilobase chromosomal DNA fragment, as revealed by deletion mapping. Northern blotting shows that the size of the CDC6 mRNA is about 1.7 kilobases. A Southern blot of yeast chromosomes which were separated by the field inversion gel electrophoresis method indicates that the isolated DNA fragment is derived from chromosome X. The locus from which the clone was derived was marked by integration with a nutritional marker and found by meiotic mapping to cosegregate with CDC6. Thus, we conclude that we have isolated the authentic CDC6 gene. Nucleotide sequence analysis of the CDC6 gene has revealed an open reading frame that encodes a protein with Mr = 57,969. There are five potential Asn-X-(Ser/Thr) glycosylation sites and a highly conserved nucleotide-binding site in the CDC6 sequence. Although computer surveys indicate overall sequence homology between S. cerevisiae CDC6 protein and Saccharomyces pombe CDC10 START protein, they may not be functionally equivalent as evaluated by the complementation assay.  相似文献   

11.
We have cloned a gene (BCY1) from the yeast Saccharomyces cerevisiae that encodes a regulatory subunit of the cyclic AMP-dependent protein kinase. The encoded protein has a structural organization similar to that of the RI and RII regulatory subunits of the mammalian cyclic AMP-dependent protein kinase. Strains of S. cerevisiae with disrupted BCY1 genes do not display a cyclic AMP-dependent protein kinase in vitro, fail to grow on many carbon sources, and are exquisitely sensitive to heat shock and starvation.  相似文献   

12.
Proper ras1 function is required for normal sexual function in the yeast Schizosaccharomyces pombe. We have found a gene in S. pombe, sar1, that encodes a product capable of regulating ras1 function. sar1 is a member of an expanding family of RAS GTPase-activating proteins (GAPs) that includes mammalian GAP, the yeast Saccharomyces cerevisiae IRA proteins, and the product of the human neurofibromatosis locus, NF1 sar1, like these other proteins, can complement the loss of IRA function in S. cerevisiae. Computer analysis shows that the highest degree of sequence conservation is restricted to a very small number of diagnostic residues represented by the motif Phe-Leu-Arg-X-X-X-Pro-Ala-X-X-X-Pro. We find no evidence that sar1 is required for the effector function of ras1.  相似文献   

13.
In the yeast Saccharomyces cerevisiae, two genes (GRS1 and GRS2) encode glycyl-tRNA synthetase (GlyRS1 and GlyRS2, respectively). 59% of the sequence of GlyRS2 is identical to that of GlyRS1. Others have proposed that GRS1 and GRS2 encode the cytoplasmic and mitochondrial enzymes, respectively. In this work, we show that GRS1 encodes both functions, whereas GRS2 is dispensable. In addition, both cytoplasmic and mitochondrial phenotypes of the knockout allele of GRS1 in S. cerevisiae are complemented by the expression of the only known gene for glycyl-tRNA synthetase in Schizosaccharomyces pombe. Thus, a single gene for glycyl-tRNA synthetase likely encodes both cytoplasmic and mitochondrial activities in most or all yeast. Phylogenetic analysis shows that GlyRS2 is a predecessor of all yeast GlyRS homologues. Thus, GRS1 appears to be the result of a duplication of GRS2, which itself is pseudogene-like.  相似文献   

14.
Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastorianus. The genome structure of CBS 380(T), the type strain of Saccharomyces bayanus, is also consistent with S. pastorianus gene transfer. The results indicate that the cider yeast, CID1, possesses nuclear DNA from three separate species. Mating experiments show that there are no barriers to interspecific conjugation of haploid cells. Furthermore, the allopolyploid strains were able to undergo further hybridizations with other Saccharomyces sensu stricto yeasts. These results demonstrate that introgression between the Saccharomyces sensu stricto species is likely.  相似文献   

15.
Glucoamylase produced by amylolytic strains of Saccharomyces cerevisiae (var. diastaticus) lacks a starch binding domain that is present in homologous glucoamylases from Aspergillus niger and other filamentous fungi. The absence of the binding domain makes the enzyme inefficient against raw starch and hence unsuitable for most biotechnological applications. We have constructed a hybrid glucoamylase-encoding gene by in-frame fusion of the S. cerevisiae STA1 gene and DNA fragment that encodes the starch binding domain of A. niger glucoamylase. The hybrid enzyme resulting from expression of the chimeric gene in S. cerevisiae has substrate binding capability and hydrolyses insoluble starch, properties not present in the original yeast enzyme.  相似文献   

16.
The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.  相似文献   

17.
Tatebayashi K  Tani T  Ikeda H 《Genetics》2001,157(4):1513-1522
We have cloned and characterized the Schizosaccharomyces pombe gene mog1(+), which encodes a protein with homology to the Saccharomyces cerevisiae Mog1p participating in the Ran-GTPase system. The S. pombe Mog1p is predominantly localized in the nucleus. In contrast to the S. cerevisiae MOG1 gene, the S. pombe mog1(+) gene is essential for cell viability. mog1(+) is required for the mitosis-to-interphase transition, as the mog1-1 mutant arrests at restrictive temperatures as septated, binucleated cells with highly condensed chromosomes and an aberrant nuclear envelope. FACS analysis showed that these cells do not undergo a subsequent round of DNA replication. Surprisingly, also unlike the Delta mog1 mutation in S. cerevisiae, the mog1-1 mutation causes nucleolar accumulation of poly(A)(+) RNA at the restrictive temperature in S. pombe, but the signals do not overlap with the fibrillarin-rich region of the nucleolus. Thus, we found that mog1(+) is required for the mitosis-to-interphase transition and a class of RNA metabolism. In our attempt to identify suppressors of mog1-1, we isolated the spi1(+) gene, which encodes the fission yeast homologue of Ran. We found that overexpression of Spi1p rescues the S. pombe Delta mog1 cells from death. On the basis of these results, we conclude that mog1(+) is involved in the Ran-GTPase system.  相似文献   

18.
A putative protein tyrosine phosphatase (PTPase) gene, PTP2, was cloned from Saccharomyces cerevisiae. The complete yeast PTP2 gene encodes a 750-amino acid residue protein with a predicted mass of 86 kDa. The conserved PTPase domain was localized in the C-terminal half of the protein. Amino acid sequence alignment of the yeast PTPase domain with other phosphatases indicated approximately 20-25% sequence identity with the mammalian PTPase and a similar degree of identity with the PTPase encoded by the yeast PTP1 gene. The PTP2 gene is closely linked to the yeast RET1 and STE4 genes and is localized on the right arm of chromosome 15. Gene disruption experiments demonstrated that neither PTP2 alone nor PTP2 in combination with PTP1 was essential for growth under the conditions tested. The ability of PTP2 to complement the cdc25-22 mutant of Schizosaccharomyces pombe was also examined, and unlike the human T-cell PTPase, which was able to complement the cdc25-22 mutant, the S. cerevisiae PTP2 was unable to complement the cdc25-22 mutant of S. pombe.  相似文献   

19.
20.
In the fission yeast Schizosaccharomyces pombe, only one alcohol dehydrogenase gene, adh1(+), has been identified. To elucidate the influence of adh1(+) on ethanol fermentation, we constructed the adh1 null strain (delta adh1). The delta adh1 cells still produced ethanol and grew fermentatively as the wild-type cells. Both DNA microarray and RT-PCR analysis demonstrated that this ethanol production is caused by the enhanced expression of a Saccharomyces cerevisiae ADH4-like gene product (SPAC5H10.06C named adh4(+)). Since the strain lacking both adh1 and adh4 genes (delta adh1 delta adh4) showed non-fermentative retarded growth, only these two ADHs produce ethanol for fermentative growth. This is the first observation that a S. cerevisiae ADH4-like alcohol dehydrogenase functions in yeast ethanol fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号