首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of growth in rice seedlings   总被引:1,自引:0,他引:1  
Etiolated rice seedlings (Oryza sativa L.) exhibited marked morphological differences when grown in sealed containers or in containers through which air was passed continuously. Enhancement of coleoptile and mesocotyl growth and inhibition of leaf and root growth in the sealed containers (“enclosure syndrome”) were accompanied by accumulation of CO2 and C2H4 in and depletion of O2 from the atmosphere. Ethylene (1 μl 1?1), high levels of CO2, and reduced levels of O2 contributed equally to the increase in coleoptile and mesocotyl growth. The effect of enclosure could be mimicked by passing a gas mixture of 3% O2, 82% N2, 15% CO2 (all v/v), and 1 μl l?1) C2H4 through the vials containing the etiolated seedlings. The effects of high CO2 and low O2 concentrations were not mediated through increased C2H4 production. The enclosure syndrome was also observed in rice seedlings grown under water either in darkness or in light. The length of the rice coleoptile was positively correlated with the depth of planting in water-saturated vermiculite. The length of coleoptiles of wheat, barley, and oats was not affected by the depth of planting. In rice, the length of coleoptile was determined by the levels of O2, CO2, and ethylene, rather than by light. This regulatory mechanism allows rice seedlings to grow out of shallow water in which the concentration of O2 is limiting.  相似文献   

2.
Regulation of growth in rice seedlings   总被引:3,自引:0,他引:3  
Etiolated rice seedlings (Oryza sativa L.) exhibited marked morphological differences when grown in sealed containers or in containers through which air was passed continuously. Enhancement of coleoptile and mesocotyl growth and inhibition of leaf and root growth in the sealed containers (enclosure syndrome) were accompanied by accumulation of CO2 and C2H4 in and depletion of O2 from the atmosphere. Ethylene (1 l 1–1), high levels of CO2, and reduced levels of O2 contributed equally to the increase in coleoptile and mesocotyl growth. The effect of enclosure could be mimicked by passing a gas mixture of 3% O2, 82% N2, 15% CO2 (all v/v), and 1 l l–1) C2H4 through the vials containing the etiolated seedlings. The effects of high CO2 and low O2 concentrations were not mediated through increased C2H4 production. The enclosure syndrome was also observed in rice seedlings grown under water either in darkness or in light. The length of the rice coleoptile was positively correlated with the depth of planting in water-saturated vermiculite. The length of coleoptiles of wheat, barley, and oats was not affected by the depth of planting. In rice, the length of coleoptile was determined by the levels of O2, CO2, and ethylene, rather than by light. This regulatory mechanism allows rice seedlings to grow out of shallow water in which the concentration of O2 is limiting.  相似文献   

3.
The resistance of oranges (Citrus sinensis L. Osbeck) and grapefruit (Citrus paradisi Macf.) to ethylene, O2, CO2, and H2O mass transport was investigated anatomically with scanning electron microscope and physiologically by gas exchange measurements at steady state. The resistance of untreated fruit to water vapor is far less than to ethylene, CO2 and O2. Waxing partially or completely plugs stomatal pores and forms an intermittent cracked layer over the surface of fruit, restricting transport of ethylene, O2, and CO2, but not of water; whereas individual sealing of fruit with high density polyethylene films reduces water transport by 90% without substantially inhibiting gas exchange.

Stomata of harvested citrus fruits are essentially closed. However, ethylene, O2 and CO2 still diffuse mainly through the residual stomatal opening where the relative transport resistance (approximately 6,000 seconds per centimeter) depends on the relative diffusivity of each gas in air. Water moves preferentially by a different pathway, probably through a liquid aqueous phase in the cuticle where water conductance is 60-fold greater. Other gases are constrained from using this pathway because their diffusivity in liquid water is 104-fold less than in air.

  相似文献   

4.
Tomato fruit quality depends on its metabolite content, which in turn is determined by numerous metabolic changes occurring during fruit development and ripening. The aim of this work was to investigate whether flooding affects the nutritional quality of tomato fruit, focusing on compounds essential to human health: carotenoids and ascorbate. To this end, tomato plants (Solanum lycopersicum L. cv Micro-Tom) were submitted to prolonged root hypoxia (1–2% O2) at first flower anthesis. Fruits were harvested at five stages of the ripening process and analysed for their carotenoid and ascorbate contents. Our results showed that the ripening of fruits that developed on hypoxia treated plants was not inhibited. However, root hypoxia significantly limits carotenoid and ascorbate accumulation in pericarp during fruit ripening, the strongest effects being observed at late stages of ripening. Limitation of both carotenoids and ascorbate accumulation seems to be primarily mediated by the reduced level of expression of genes of the corresponding metabolic pathway.  相似文献   

5.
The nutritional economy of the fruit of cowpea (Vigna unguiculata (L.) Walp cv Vita 3) was assessed quantitatively from intake and utilization of carbon, nitrogen, and water. Fruits failed to make net gains of CO2 from the atmosphere during daytime, although pod photosynthesis did play a role in the fruit's carbon economy by refixing a proportion of the fruit's respired CO2. Of every 100 units by weight of carbon entering the fruit, 70.4 were finally incorporated into seeds, 10.3 remained as nonmobilizable material in pod walls, and the remaining 19.3 were lost in fruit respiration. Phloem supplied 97% of the fruit's carbon and 72% of its nitrogen. The xylem contribution of nitrogen occurred mainly in early growth. Ninety-six% of the fruit's nitrogen was incorporated into seeds, approximately 10% of this mobilized from the senescing pod. The mean transpiration ratio of the fruit was very low—8 milliliters water transpired per gram dry matter accumulated. Models of carbon, nitrogen, and water flow were constructed for the two consecutive 11 day periods of fruit development, and indicated a considerably greater entry of water through xylem and phloem than could be accounted for in changes in fruit tissue water and transpiration loss. This discrepancy was greater in the second half of fruit growth and was interpreted as evidence that a significant fraction of the water entering the fruit through phloem cycled back to the parent plant via the xylem.  相似文献   

6.
To develop environmentally amenable insect disinfestations, effects of a carbon dioxide (CO2) controlled atmosphere (CA) on the control of the oriental tobacco budwormHelicoverpa assulta were investigated in green hot peppers. Green hot peppers (cv. Nokgwang) were exposed to CO2. at 80% and 100% in 0.08-mm polyethylene film bags for 24 and 48 h at 20°C. Mortality percentages of oriental tobacco budworm larvae were determined after gas exposure. The CO2-CA at both concentrations for 24 h greatly reduced survival of the larvae, showing approximately 65% mortality when compared with control fruit. Prolonged exposure at both concentrations up to 48 h completely disinfested the larvae. To evaluate plausible deleterious effects of the ultra high CO2-CA on green hot peppers, the fruit were stored at 10°C, and postharvest quality was analyzed in terms of firmness, electrolyte leakage, respiration rate, and content of vitamin C and capsaicin. There were no significant differences in postharvest fruit quality up to 20 days of storage, compared with control fruit. Meanwhile, respiration rates of exposed pepper fruit were approximately half the control’s rate after 20 days of storage. These results suggested that ultra high CO2 CA could disinfestH. assulta without significant differences in postharvest quality of green hot peppers, compared with control fruit. Exposure of 80% CO2 for 24 h would be recommended as a reliable control means that is harmless to humans and can alleviate concern regarding pesticide residues.  相似文献   

7.
8.
The economy of functioning of the developing fruit of white lupin (Lupinus albus L.) is assessed quantitatively in relation to intake and usage of carbon, nitrogen, and water. Of every 100 units of carbon imported from the parent plant, 52 are incorporated into seeds, 37 into nonmobilizable material of the pod, and the remaining 11 lost as CO2 to the atmosphere. An illuminated fruit can make net gains of CO2 from the atmosphere during the photoperiods of all but the last 2 weeks of its life, suggesting that it is active in assimilation of CO2 respired from pods and seeds. This conservation activity is important to carbon economy.  相似文献   

9.
The effects of reduced water potential (ψ) on seed germination at 25 and 15 °C in unprimed (UP) and primed (P) seeds of two cultivars of sweet sorghum (cv. Keller and cv. Makueni local), were analyzed through the hydrotime model. Six ψ (from 0 to ?1.0 MPa) in polyethylene glycol 6000 (PEG) solutions were used for the tests. Seeds were primed in 250 g/L PEG solution at 15 °C for 48 h. Decreasing ψ of imbibition solution reduced and delayed germination. At 15 °C seeds germinated less and slower than at 25 °C at any ψ. Seeds of cv. Makueni local exhibited a greater sensitivity to water stress in terms of germination percentage, than seeds of cv. Keller, but they were faster in germination. Osmopriming was beneficial for seed germination, both in terms of final percentage and rate, at any temperature and ψ. The hydrotime analysis revealed that predicted θ H constant was increased when temperature was reduced to 15 °C and at this temperature median base water potential [ψ b(50)] for germination was higher (less negative) than at 25 °C. Seed priming shifted ψ b(50) towards more negative values and reduced θ H requirements for germination. At 25 °C the two cultivars behaved similarly while at 15 °C cv. Keller exhibited a ψ b more negative but required a greater θ H to germinate, indicating a greater water-stress tolerance but a slower germination, than cv. Makueni local. The application of the model allows to identify water stress tolerant cultivars during germination, to include into breeding programs for the selection of well-performing cultivars under stress conditions.  相似文献   

10.

Background

Understanding the mechanisms involved in climacteric fruit ripening is key to improve fruit harvest quality and postharvest performance. Kiwifruit (Actinidia deliciosa cv. ‘Hayward’) ripening involves a series of metabolic changes regulated by ethylene. Although 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) or ozone (O3) exposure suppresses ethylene-related kiwifruit ripening, how these molecules interact during ripening is unknown.

Results

Harvested ‘Hayward’ kiwifruits were treated with 1-MCP and exposed to ethylene-free cold storage (0?°C, RH 95%) with ambient atmosphere (control) or atmosphere enriched with O3 (0.3?μL?L??1) for up to 6?months. Their subsequent ripening performance at 20?°C (90% RH) was characterized. Treatment with either 1-MCP or O3 inhibited endogenous ethylene biosynthesis and delayed fruit ripening at 20?°C. 1-MCP and O3 in combination severely inhibited kiwifruit ripening, significantly extending fruit storage potential. To characterize ethylene sensitivity of kiwifruit following 1-MCP and O3 treatments, fruit were exposed to exogenous ethylene (100?μL?L??1, 24?h) upon transfer to 20?°C following 4 and 6?months of cold storage. Exogenous ethylene treatment restored ethylene biosynthesis in fruit previously exposed in an O3-enriched atmosphere. Comparative proteomics analysis showed separate kiwifruit ripening responses, unraveled common 1-MCP- and O3-dependent metabolic pathways and identified specific proteins associated with these different ripening behaviors. Protein components that were differentially expressed following exogenous ethylene exposure after 1-MCP or O3 treatment were identified and their protein-protein interaction networks were determined. The expression of several kiwifruit ripening related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), ethylene receptor (ETR1), lipoxygenase (LOX1), geranylgeranyl diphosphate synthase (GGP1), and expansin (EXP2), was strongly affected by O3, 1-MCP, their combination, and exogenously applied ethylene.

Conclusions

Our findings suggest that the combination of 1-MCP and O3 functions as a robust repressive modulator of kiwifruit ripening and provide new insight into the metabolic events underlying ethylene-induced and ethylene-independent ripening outcomes.
  相似文献   

11.
Oxidation versus Reductive Detoxification of SO(2) by Chloroplasts   总被引:2,自引:2,他引:0       下载免费PDF全文
Intact chloroplasts isolated from spinach (Spinacia oleracea L. cv Yates) both oxidized and reduced added sulfite in the light. Oxidation was fast only when endogenous superoxide dismutase was inhibited by cyanide. It was largely suppressed by scavengers of oxygen radicals. After addition of O-acetylserine, chloroplasts reduced sulfite to cysteine and exhibited sulfite-dependent oxygen evolution. Cysteine synthesis from sulfite was faster than from sulfate. The results are discussed in relation to species-specific differences in the phytotoxicity of SO2.  相似文献   

12.
Collections of lily genotypes are usually maintained by yearly planting, harvesting and storage of the bulbs. To facilitate this maintenance, a storage method has been developed for a collection of lily genotypes, including Asiatic hybrids, Oriental hybrids, Lilium longiflorum and L. henryi. Scale bulblets were stored either dry, sealed air-tight in polyethylene bags, or in moist vermiculite in open polyethylene bags for a period of 2 yr. The decrease in mass, sprouting proportion and ion leakage or sprouting proportion alone were determined for treatments carried out at -2°C, °C and 17°C. Sealing scale bulblets in polyethylene bags at -2°C resulted in the smallest decrease in mass, the least ion leakage and the highest sprouting proportion after 2 yr of storage.  相似文献   

13.
Gross KC 《Plant physiology》1985,79(1):306-307
Mature green tomato fruit (Lycopersicon esculentum Mill. cv `Rutgers') were infiltrated with 0.5 milliliters of sterilized, distilled water alone, or containing enough glucose or galactose to allow for a concentration of 400 micrograms per gram fresh weight after infiltration. All fruit showed a transient peak of ethylene production within 6 hours due to the slight wounding by vacuum infiltration. In addition, galactose-treated fruit underwent a temporal increase in ethylene production after 25 hours, whereas, the glucose and H2O-control fruit did not. Furit infiltrated with galactose subsequently produced ethylene and ripened substantially earlier than glucose or H2O-control fruit.  相似文献   

14.
Cylindrical polyethylene enclosures 3 m in length and 1 m in diameter reaching from the surface to the bottom were constructed in an acid (pH=3.1) lake on a coal surface mine in southern Illinois. Wheat straw was added to the enclosures to test the effects of dissimilatory sulfate reduction on water chemistry. Added straw increased sulfide concentrations, raised pH to 6.5, reduced O2 and increased acid neutralizing capacity of the enclosed water columns when compared with a control enclosure and with the open lake. Generation of acid neutralizing capacity exceeded the standing stock of sulfide indicating that sulfide was removed either by precipitation of FeS or outgassing of H2S. The pH and acid neutralizing capacity within the enclosures eventually returned to the level of the surrounding lake because of water exchange around the enclosure walls. Our results show that additions of organic matter to acid surface mine lakes result in the generation of acid neutralizing capacity.  相似文献   

15.
Vanadate (Na3 VO4) inhibits leaf movement and stomatal conductance of Phaseolus vulgaris L. cv. Carlos Favorit in light-dark cycles as well as photomorphogenetic leaf unrolling of Hordeum vulgare L. cv. Rupal. Inhibition was 50% by 10 to 100 micromolar vanadate and 100% by millimolar vanadate. Leaf unrolling was also inhibited by oligomycin and diethylstilbestrol.  相似文献   

16.
A pear (Pyrus communis L. cv Passe Crassane) cell suspension was used as a model system to study the influence of gibberellin on processes related to fruit ripening. Growth of the cell cultures was inhibited and their loss of viability was accelerated when 0.5 millimolar gibberllic acid (GA3) was added to suspensions at two stages of cell development, namely, growth and quiescence. Cell respiration rate was unaffected up to 2 millimolar GA3 but ethylene production, both basal and 1-aminocyclopropane-1-carboxylic acid-induced, was inhibited at all stages of cell development. However, the degree of inhibition decreased as the cell cultures aged. The site of ethylene inhibition by GA3 appeared to be related to the ethylene-forming enzyme. The coincident acceleration of cell senescence and inhibition of ethylene production indicate that the pear cell suspension cannot serve as an analogous model for studying the mode of action of gibberellin in delaying ripening and senescence of fruits in its entirety, although certain specific effects might be relevant.  相似文献   

17.
Nitrate-dependent o(2) evolution in intact leaves   总被引:6,自引:2,他引:4       下载免费PDF全文
Evolution of O2 by illuminated intact detached leaves from barley (Hordeum vulgare L. cv Athos) and pea (Pisum sativum L. cv Lincoln) in a CO2-saturating atmosphere was enhanced when KNO3 (1-2.5 millimolar) had been previously supplied through the transpiration stream. The extra O2 evolution observed after feeding KNO3 increased with the light intensity, being maximal at near saturating photon flux densities and resulting in no changes in the initial slope of the O2 versus light-intensity curve. No stimulation of O2 evolution was otherwise observed after feeding KCl or NH4Cl. The data indicate that nitrate assimilation uses photosynthetically generated reductant and stimulates the rate of non-cyclic electron flow by acting as a second electron-accepting assimilatory process in addition to CO2 fixation.  相似文献   

18.
Emmert FH 《Plant physiology》1974,53(4):663-665
Application of polyethylene glycol or phenylmercuric acetate to intact bean (Phaseolus vulgaris L., cv. Red Wade) roots inhibited passage of phosphorus across the roots to the xylem. The same results occurred for foliar application of phenylmercuric acetate when time was allowed for absorption and distribution of the chemical in the plant. For both chemicals the inhibition of phosphorus was proportional to or greater than any accompanying restriction on water flow across the root.  相似文献   

19.
World areas subject to drought are expected to increase under conditions of climate change. The purpose of this study is to clarify the response of grass species that can grow and produce under water stress. Therefore leaf photosynthesis, chlorophyll fluorescence and pigment content response to water stress were studied in two varieties of the C4 grass Eragrostis curvula. Two-year-old plants of cv Ermelo and Consol were grown in plastic pots. Drought stress was imposed by withholding irrigation for 15 days and then rewatering for 5 days. During drought relative water content (RWC) decreased 65% in cv Ermelo, while lower reductions of RWC were observed in cv Consol. During the experiment in cv Ermelo increasing drought stress severity caused large decreases in photosynthetic rates, maximal PSII photochemical efficiency (FV/FM) and leaf pigment content. Cv Consol showed small variations in these parameters. Compared to cv Consol, after 15 days of drought, effective PSII quantum yield (ΦII) was significantly lower in cv Ermelo. Reductions of ΦII were related to significant reductions of open PSII energy capture efficiency (FV/FM). Photosynthetic response to increasing PPFD levels and to internal CO2 concentration (Ci) were reduced by drought in cv Ermelo. Compared to well-watered control plants and to cv Consol, drought stressed plants of cv Ermelo showed also reductions of the initial slope of photosynthetic response to Ci and in the photosynthetic rate measured at saturating Ci. Moreover stomatal conductance (g) of both cvs decreased during drought. However, g was lower in drought stressed plants of cv Consol than in cv Ermelo. Water stress caused large reductions in leaf chlorophyll and carotenoid content in cv Ermelo, and small reductions in cv Consol. In drought-sensitive cv Ermelo water stress reduced the capabilities to down regulate PSII functionality through thermal energy dissipation. Results suggest that drought resistance of cv Consol, can be attributed to a higher water use efficiency.  相似文献   

20.
Sunflower (Helianthus annus L. cv. PSH-7) plants were subjected to different osmotic potentials, using polyethylene glycol-6000 (PEG-6000), after, prior to and during SO2 fumigation. Total soluble proteins and nitrate reductase activity (NRA) decreased, and free proline content increased with the increasing water stress. These biochemical parameters were more adversely affected in fumigated plants than in non-fumigated ones, when mild water stress was provided prior to and during fumigation. When severe water stress was given prior to and during fumigation, total soluble proteins, NRA and free proline content were nearly the same in fumigated and non-fumigated water-stressed plants; it is because the stomatal closure was observed in water-stressed plants. The leaf water potential decreased with the increasing water stress; however, it was not significantly affected due to SO2 fumigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号